NAME
socket — kernel socket interface
SYNOPSIS
#include <sys/socket.h>
#include <sys/socketvar.h>
void
soabort(struct socket *so);
int
soaccept(struct socket *so, struct sockaddr **nam);
int
socheckuid(struct socket *so, uid_t uid);
int
sobind(struct socket *so, struct sockaddr *nam, struct thread *td);
void
soclose(struct socket *so);
int
soconnect(struct socket *so, struct sockaddr *nam, struct thread *td);
int
socreate(int dom, struct socket **aso, int type, int proto, struct ucred *cred, struct thread *td);
int
sodisconnect(struct socket *so);
void
sodtor_set(struct socket *so, void (*func)(struct socket *));
struct sockaddr *
sodupsockaddr(const struct sockaddr *sa, int mflags);
void
sofree(struct socket *so);
void
sohasoutofband(struct socket *so);
int
solisten(struct socket *so, int backlog, struct thread *td);
void
solisten_proto(struct socket *so, int backlog);
int
solisten_proto_check(struct socket *so);
struct socket *
sonewconn(struct socket *head, int connstatus);
int
sopoll(struct socket *so, int events, struct ucred *active_cred, struct thread *td);
int
sopoll_generic(struct socket *so, int events, struct ucred *active_cred, struct thread *td);
int
soreceive(struct socket *so, struct sockaddr **psa, struct uio *uio, struct mbuf **mp0, struct mbuf **controlp, int *flagsp);
int
soreceive_stream(struct socket *so, struct sockaddr **paddr, struct uio *uio, struct mbuf **mp0, struct mbuf **controlp, int *flagsp);
int
soreceive_dgram(struct socket *so, struct sockaddr **paddr, struct uio *uio, struct mbuf **mp0, struct mbuf **controlp, int *flagsp);
int
soreceive_generic(struct socket *so, struct sockaddr **paddr, struct uio *uio, struct mbuf **mp0, struct mbuf **controlp, int *flagsp);
int
soreserve(struct socket *so, u_long sndcc, u_long rcvcc);
void
sorflush(struct socket *so);
int
sosend(struct socket *so, struct sockaddr *addr, struct uio *uio, struct mbuf *top, struct mbuf *control, int flags, struct thread *td);
int
sosend_dgram(struct socket *so, struct sockaddr *addr, struct uio *uio, struct mbuf *top, struct mbuf *control, int flags, struct thread *td);
int
sosend_generic(struct socket *so, struct sockaddr *addr, struct uio *uio, struct mbuf *top, struct mbuf *control, int flags, struct thread *td);
int
soshutdown(struct socket *so, int how);
void
sotoxsocket(struct socket *so, struct xsocket *xso);
void
soupcall_clear(struct socket *so, int which);
void
soupcall_set(struct socket *so, int which, int (*func)(struct socket *, void *, int), void *arg);
void
sowakeup(struct socket *so, struct sockbuf *sb);
#include <sys/sockopt.h>
int
sosetopt(struct socket *so, struct sockopt *sopt);
int
sogetopt(struct socket *so, struct sockopt *sopt);
int
sooptcopyin(struct sockopt *sopt, void *buf, size_t len, size_t minlen);
int
sooptcopyout(struct sockopt *sopt, const void *buf, size_t len);
DESCRIPTION
The kernel socket programming interface permits in-kernel consumers to interact with local and network socket objects in a manner similar to that permitted using the socket(2) user API. These interfaces are appropriate for use by distributed file systems and other network-aware kernel services. While the user API operates on file descriptors, the kernel interfaces operate directly on struct socket pointers. Some portions of the kernel API exist only to implement the user API, and are not expected to be used by kernel code. The portions of the socket API used by socket consumers and implementations of network protocols will differ; some routines are only useful for protocol implementors.
Except where otherwise indicated, socket functions may sleep, and are not appropriate for use in an ithread(9) context or while holding non-sleepable kernel locks.
Creating and
Destroying Sockets
A new socket may be created using socreate(). As with
socket(2), arguments specify the requested domain, type, and
protocol via dom, type, and proto. The
socket is returned via aso on success. In addition,
the credential used to authorize operations associated with
the socket will be passed via cred (and will be
cached for the lifetime of the socket), and the thread
performing the operation via td. Warning:
authorization of the socket creation operation will be
performed using the thread credential for some protocols
(such as raw sockets).
Sockets may be closed and freed using soclose(), which has similar semantics to close(2).
In certain circumstances, it is appropriate to destroy a socket without waiting for it to disconnect, for which soabort() is used. This is only appropriate for incoming connections which are in a partially connected state. It must be called on an unreferenced socket, by the thread which removed the socket from its listen queue, to prevent races. It will call into protocol code, so no socket locks may be held over the call. The caller of soabort() is responsible for setting the VNET context. The normal path to freeing a socket is sofree(), which handles reference counting on the socket. It should be called whenever a reference is released, and also whenever reference flags are cleared in socket or protocol code. Calls to sofree() should not be made from outside the socket layer; outside callers should use soclose() instead.
Connections
and Addresses
The sobind() function is equivalent to the bind(2)
system call, and binds the socket so to the address
nam. The operation would be authorized using the
credential on thread td.
The soconnect() function is equivalent to the connect(2) system call, and initiates a connection on the socket so to the address nam. The operation will be authorized using the credential on thread td. Unlike the user system call, soconnect() returns immediately; the caller may msleep(9) on so->so_timeo while holding the socket mutex and waiting for the SS_ISCONNECTING flag to clear or so->so_error to become non-zero. If soconnect() fails, the caller must manually clear the SS_ISCONNECTING flag.
A call to sodisconnect() disconnects the socket without closing it.
The soshutdown() function is equivalent to the shutdown(2) system call, and causes part or all of a connection on a socket to be closed down.
Sockets are transitioned from non-listening status to listening with solisten().
Socket
Options
The sogetopt() function is equivalent to the
getsockopt(2) system call, and retrieves a socket option on
socket so. The sosetopt() function is
equivalent to the setsockopt(2) system call, and sets a
socket option on socket so.
The second argument in both sogetopt() and sosetopt() is the sopt pointer to a struct sopt describing the socket option operation. The caller-allocated structure must be zeroed, and then have its fields initialized to specify socket option operation arguments:
sopt_dir
Set to SOPT_SET or SOPT_GET depending on whether this is a get or set operation.
sopt_level
Specify the level in the network stack the operation is targeted at; for example, SOL_SOCKET.
sopt_name
Specify the name of the socket option to set.
sopt_val
Kernel space pointer to the argument value for the socket option.
sopt_valsize
Size of the argument value in bytes.
Socket
Upcalls
In order for the owner of a socket to be notified when the
socket is ready to send or receive data, an upcall may be
registered on the socket. The upcall is a function that will
be called by the socket framework when a socket buffer
associated with the given socket is ready for reading or
writing. soupcall_set() is used to register a socket
upcall. The function func is registered, and the
pointer arg will be passed as its second argument
when it is called by the framework. The possible values for
which are SO_RCV and SO_SND, which register upcalls
for receive and send events, respectively. The upcall
function func() must return either SU_OK or
SU_ISCONNECTED, depending on whether or not a call to
soisconnected should be made by the socket framework after
the upcall returns. The upcall func cannot call
soisconnected itself due to lock ordering with the socket
buffer lock. Only SO_RCV upcalls should return
SU_ISCONNECTED. When a SO_RCV upcall returns SU_ISCONNECTED,
the upcall will be removed from the socket.
Upcalls are removed from their socket by soupcall_clear(). The which argument again specifies whether the sending or receiving upcall is to be cleared, with SO_RCV or SO_SND.
Socket
Destructor Callback
A kernel system can use the sodtor_set() function to
set a destructor for a socket. The destructor is called when
the socket is is about to be freed. The destructor is called
before the protocol detach routine. The destructor can serve
as a callback to initiate additional cleanup actions.
Socket
I/O
The soreceive() function is equivalent to the
recvmsg(2) system call, and attempts to receive bytes of
data from the socket so, optionally blocking awaiting
for data if none is ready to read. Data may be retrieved
directly to kernel or user memory via the uio
argument, or as an mbuf chain returned to the caller via
mp0, avoiding a data copy. The uio must always
be non-NULL. If mp0 is non-NULL, only the
uio_resid of uio is used. The caller may
optionally retrieve a socket address on a protocol with the
PR_ADDR capability by providing storage via non-NULL
psa argument. The caller may optionally retrieve
control data mbufs via a non-NULL controlp argument.
Optional flags may be passed to soreceive() via a
non-NULL flagsp argument, and use the same flag name
space as the recvmsg(2) system call.
The sosend() function is equivalent to the sendmsg(2) system call, and attempts to send bytes of data via the socket so, optionally blocking if data cannot be immediately sent. Data may be sent directly from kernel or user memory via the uio argument, or as an mbuf chain via top, avoiding a data copy. Only one of the uio or top pointers may be non-NULL. An optional destination address may be specified via a non-NULL addr argument, which may result in an implicit connect if supported by the protocol. The caller may optionally send control data mbufs via a non-NULL control argument. Flags may be passed to sosend() using the flags argument, and use the same flag name space as the sendmsg(2) system call.
Kernel callers running in ithread(9) context, or with a mutex held, will wish to use non-blocking sockets and pass the MSG_DONTWAIT flag in order to prevent these functions from sleeping.
A socket can be queried for readability, writability, out-of-band data, or end-of-file using sopoll(). The possible values for events are as for poll(2), with symbolic values POLLIN, POLLPRI, POLLOUT, POLLRDNORM, POLLWRNORM, POLLRDBAND, and POLLINGEOF taken from <sys/poll.h>.
Calls to soaccept() pass through to the protocol’s accept routine to accept an incoming connection.
Socket
Utility Functions
The uid of a socket’s credential may be compared
against a uid with socheckuid().
A copy of an existing struct sockaddr may be made using sodupsockaddr().
Protocol implementations notify the socket layer of the arrival of out-of-band data using sohasoutofband(), so that the socket layer can notify socket consumers of the available data.
An ’’external-format’’ version of a struct socket can be created using sotoxsocket(), suitable for isolating user code from changes in the kernel structure.
Protocol
Implementations
Protocols must supply an implementation for
solisten(); such protocol implementations can call
back into the socket layer using
solisten_proto_check() and solisten_proto() to
check and set the socket-layer listen state. These callbacks
are provided so that the protocol implementation can order
the socket layer and protocol locks as necessary. Protocols
must supply an implementation of soreceive(); the
functions soreceive_stream(),
soreceive_dgram(), and soreceive_generic() are
supplied for use by such implementations.
Protocol implementations can use sonewconn() to create a socket and attach protocol state to that socket. This can be used to create new sockets available for soaccept() on a listen socket. The returned socket has a reference count of zero.
Protocols must supply an implementation for sopoll(); sopoll_generic() is provided for the use by protocol implementations.
The functions sosend_dgram() and sosend_generic() are supplied to assist in protocol implementations of sosend().
When a protocol creates a new socket structure, it is necessary to reserve socket buffer space for that socket, by calling soreserve(). The rough inverse of this reservation is performed by sorflush(), which is called automatically by the socket framework.
When a protocol needs to wake up threads waiting for the socket to become ready to read or write, variants of sowakeup() are used. The sowakeup() function should not be called directly by protocol code, instead use the wrappers sorwakeup(), sorwakeup_locked(), sowwakeup(), and sowwakeup_locked() for readers and writers, with the corresponding socket buffer lock not already locked, or already held, respectively.
The functions sooptcopyin() and sooptcopyout() are useful for transferring struct sockopt data between user and kernel code.
SEE ALSO
bind(2), close(2), connect(2), getsockopt(2), recv(2), send(2), setsockopt(2), shutdown(2), socket(2), ng_ksocket(4), ithread(9), msleep(9), ucred(9)
HISTORY
The socket(2) system call appeared in 4.2BSD. This manual page was introduced in FreeBSD 7.0.
AUTHORS
This manual page was written by
Robert Watson and
Benjamin Kaduk.
BUGS
The use of explicitly passed credentials, credentials hung from explicitly passed threads, the credential on curthread, and the cached credential from socket creation time is inconsistent, and may lead to unexpected behaviour. It is possible that several of the td arguments should be cred arguments, or simply not be present at all.
The caller may need to manually clear SS_ISCONNECTING if soconnect() returns an error.
The MSG_DONTWAIT flag is not implemented for sosend(), and may not always work with soreceive() when zero copy sockets are enabled.
This manual page does not describe how to register socket upcalls or monitor a socket for readability/writability without using blocking I/O.
The soref() and sorele() functions are not described, and in most cases should not be used, due to confusing and potentially incorrect interactions when sorele() is last called after soclose().
BSD October 18, 2018 BSD