Manpages

ИМЯ

complex − основы комплексной математики

ОБЗОР

#include <complex.h>

ОПИСАНИЕ

Комплексные числа являются чилами вида z = a+b*i, где a и b являются вещественными числами, а i = sqrt(-1) (квадратный корень из минус единицы, так называемая мнимая единица -- прим.пер.), так что i*i = -1.
Существуют и другие способы представления комплесных чисел. Пара вещественных чисел (a,b) может быть представлена как точка на плоскости, которая задаётся координатными осями X и Y. Эта же самая точка может быть также описана парой вещественных чисел (r,phi), где r - это дистанция от нулевой точки отсчёта 0, а phi - угол между осью X и прямой 0z. Итак, z = r*exp(i*phi) = r*(cos(phi)+i*sin(phi)).

Основные операции с комплесными числами, заданными в виде z = a+b*i и w = c+d*i следующие:
сложение: z+w = (a+c) + (b+d)*i
умножение: z*w = (a*c - b*d) + (a*d + b*c)*i
деление: z/w = ((a*c + b*d)/(c*c + d*d)) + ((b*c - a*d)/(c*c + d*d))*i

Почти все математические функции имеют своих комплексных собратьев, но есть и только комплексные функции.

ПРИМЕР

Ваш C-компилятор может работать с комплексными числами, если он поддерживает стандарт C99. Связывание (компановку) нужно производить с опцией -lm (чтобы подключилась математическая библиотека -- прим.пер.). Здесь мнимая единица представлена как I.

/* check that exp(i*pi) == -1 */

#include <math.h>

/* for atan */

#include <complex.h>
main() {

double pi = 4*atan(1);

complex z = cexp(I*pi);

printf("%f+%f*i\n", creal(z), cimag(z));

}

СМОТРИ ТАКЖЕ

cabs(3), carg(3), cexp(3), cimag(3), creal(3)

ПЕРЕВОД

Перевёл с английского Виктор Вислобоков <corochoone [AT] perm.ru> 2004