Available in

(1) (2) (3) (7) (9) (n) (2)/cs (2)/de (2)/es (7)/es (2)/fr (7)/fr (2)/ja (7)/ja (2)/ko (7)/pt (2)/ru (3)/zh_cn (7)/zh_cn (3)/zh_tw (7)/zh_tw


SOCKET(2) BSD System Calls Manual SOCKET(2)


socket — create an endpoint for communication


Standard C Library (libc, −lc)


#include <sys/types.h>
#include <sys/socket.h>


socket(int domain, int type, int protocol);


The socket() system call creates an endpoint for communication and returns a descriptor.

The domain argument specifies a communications domain within which communication will take place; this selects the protocol family which should be used. These families are defined in the include file <sys/socket.h>. The currently understood formats are:


Host-internal protocols, formerly called PF_UNIX,


Host-internal protocols, deprecated, use PF_LOCAL,


Internet version 4 protocols,


PUP protocols, like BSP,


AppleTalk protocols,


Internal Routing protocol,


Link layer interface,


Novell Internet Packet eXchange protocol,


Help Identify RTIP packets,


Help Identify PIP packets,


Integrated Services Digital Network,


Internal key-management function,


Internet version 6 protocols,


Native ATM access,




Netgraph sockets

The socket has the indicated type, which specifies the semantics of communication. Currently defined types are:


Stream socket,


Datagram socket,


Raw-protocol interface,


Reliably-delivered packet,


Sequenced packet stream

A SOCK_STREAM type provides sequenced, reliable, two-way connection based byte streams. An out-of-band data transmission mechanism may be supported. A SOCK_DGRAM socket supports datagrams (connectionless, unreliable messages of a fixed (typically small) maximum length). A SOCK_SEQPACKET socket may provide a sequenced, reliable, two-way connection-based data transmission path for datagrams of fixed maximum length; a consumer may be required to read an entire packet with each read system call. This facility is protocol specific, and presently unimplemented. SOCK_RAW sockets provide access to internal network protocols and interfaces. The types SOCK_RAW, which is available only to the super-user, and SOCK_RDM, which is planned, but not yet implemented, are not described here.

The protocol argument specifies a particular protocol to be used with the socket. Normally only a single protocol exists to support a particular socket type within a given protocol family. However, it is possible that many protocols may exist, in which case a particular protocol must be specified in this manner. The protocol number to use is particular to the ‘‘communication domain’’ in which communication is to take place; see protocols(5).

The protocol argument may be set to zero (0) to request the default implementation of a socket type for the protocol, if any.

Sockets of type SOCK_STREAM are full-duplex byte streams, similar to pipes. A stream socket must be in a connected state before any data may be sent or received on it. A connection to another socket is created with a connect(2) system call. Once connected, data may be transferred using read(2) and write(2) calls or some variant of the send(2) and recv(2) functions. (Some protocol families, such as the Internet family, support the notion of an ‘‘implied connect’’, which permits data to be sent piggybacked onto a connect operation by using the sendto(2) system call.) When a session has been completed a close(2) may be performed. Out-of-band data may also be transmitted as described in send(2) and received as described in recv(2).

The communications protocols used to implement a SOCK_STREAM ensure that data is not lost or duplicated. If a piece of data for which the peer protocol has buffer space cannot be successfully transmitted within a reasonable length of time, then the connection is considered broken and calls will indicate an error with -1 returns and with ETIMEDOUT as the specific code in the global variable errno. The protocols optionally keep sockets ‘‘warm’’ by forcing transmissions roughly every minute in the absence of other activity. An error is then indicated if no response can be elicited on an otherwise idle connection for an extended period (e.g. 5 minutes). By default, a SIGPIPE signal is raised if a process sends on a broken stream, but this behavior may be inhibited via setsockopt(2).

SOCK_SEQPACKET sockets employ the same system calls as SOCK_STREAM sockets. The only difference is that read(2) calls will return only the amount of data requested, and any remaining in the arriving packet will be discarded.

SOCK_DGRAM and SOCK_RAW sockets allow sending of datagrams to correspondents named in send(2) calls. Datagrams are generally received with recvfrom(2), which returns the next datagram with its return address.

An fcntl(2) system call can be used to specify a process group to receive a SIGURG signal when the out-of-band data arrives. It may also enable non-blocking I/O and asynchronous notification of I/O events via SIGIO.

The operation of sockets is controlled by socket level options. These options are defined in the file <sys/socket.h>. The setsockopt(2) and getsockopt(2) system calls are used to set and get options, respectively.


A -1 is returned if an error occurs, otherwise the return value is a descriptor referencing the socket.


The socket() system call fails if:


The protocol type or the specified protocol is not supported within this domain.


The per-process descriptor table is full.


The system file table is full.


Permission to create a socket of the specified type and/or protocol is denied.


Insufficient buffer space is available. The socket cannot be created until sufficient resources are freed.


User has insufficient privileges to carry out the requested operation.


accept(2), bind(2), connect(2), getpeername(2), getsockname(2), getsockopt(2), ioctl(2), listen(2), read(2), recv(2), select(2), send(2), shutdown(2), socketpair(2), write(2), getprotoent(3), netgraph(4), protocols(5)


An Introductory 4.3 BSD Interprocess Communication Tutorial ",
7 .


BSD Interprocess Communication Tutorial ",
8 .


The socket() system call appeared in 4.2BSD.

BSD January 5, 2009 BSD


blog comments powered by Disqus