NAME
openssl-rsautl - RSA command
SYNOPSIS
openssl rsautl [-help] [-in file] [-passin arg] [-rev] [-out file] [-inkey filename|uri] [-keyform DER|PEM|P12|ENGINE] [-pubin] [-certin] [-sign] [-verify] [-encrypt] [-decrypt] [-pkcs] [-x931] [-oaep] [-raw] [-hexdump] [-asn1parse] [-engine id] [-rand files] [-writerand file] [-provider name] [-provider-path path] [-propquery propq]
DESCRIPTION
This command has been deprecated. The openssl-pkeyutl(1) command should be used instead.
This command can be used to sign, verify, encrypt and decrypt data using the RSA algorithm.
OPTIONS
-help
Print out a usage message.
-in filename
This specifies the input filename to read data from or standard input if this option is not specified.
-passin arg
The passphrase used in the output file. See see openssl-passphrase-options(1).
-rev
Reverse the order of the input.
-out filename
Specifies the output filename to write to or standard output by default.
-inkey filename|uri
The input key, by default it should be an RSA private key.
-keyform DER|PEM|P12|ENGINE
The key format; unspecified by default. See openssl-format-options(1) for details.
-pubin
By default a private key is read from the key input. With this option a public key is read instead. If the input contains no public key but a private key, its public part is used.
-certin
The input is a certificate containing an RSA public key.
-sign
Sign the input data and output the signed result. This requires an RSA private key.
-verify
Verify the input data and output the recovered data.
-encrypt
Encrypt the input data using an RSA public key.
-decrypt
Decrypt the input data using an RSA private key.
-pkcs, -oaep, -x931, -raw
The padding to use: PKCS#1 v1.5 (the default), PKCS#1 OAEP, ANSI X9.31, or no padding, respectively. For signatures, only -pkcs and -raw can be used.
Note: because of protection against Bleichenbacher attacks, decryption using PKCS#1 v1.5 mode will not return errors in case padding check failed. Use -raw and inspect the returned value manually to check if the padding is correct.
-hexdump
Hex dump the output data.
-asn1parse
Parse the ASN.1 output data, this is useful when combined with the -verify option.
-engine id
See "Engine Options" in openssl(1). This option is deprecated.
-rand files, -writerand file
See "Random State Options" in openssl(1) for details.
-provider name
-provider-path path
-propquery propq
See "Provider Options" in openssl(1), provider(7), and property(7).
NOTES
Since this command uses the RSA algorithm directly, it can only be used to sign or verify small pieces of data.
EXAMPLES
Examples equivalent to these can be found in the documentation for the non-deprecated openssl-pkeyutl(1) command.
Sign some data using a private key:
openssl rsautl -sign -in file -inkey key.pem -out sig
Recover the signed data
openssl rsautl -verify -in sig -inkey key.pem
Examine the raw signed data:
openssl rsautl
-verify -in sig -inkey key.pem -raw -hexdump
0000 - 00 01 ff ff ff ff ff ff-ff ff ff ff ff ff ff ff
................
0010 - ff ff ff ff ff ff ff ff-ff ff ff ff ff ff ff ff
................
0020 - ff ff ff ff ff ff ff ff-ff ff ff ff ff ff ff ff
................
0030 - ff ff ff ff ff ff ff ff-ff ff ff ff ff ff ff ff
................
0040 - ff ff ff ff ff ff ff ff-ff ff ff ff ff ff ff ff
................
0050 - ff ff ff ff ff ff ff ff-ff ff ff ff ff ff ff ff
................
0060 - ff ff ff ff ff ff ff ff-ff ff ff ff ff ff ff ff
................
0070 - ff ff ff ff 00 68 65 6c-6c 6f 20 77 6f 72 6c 64
.....hello world
The PKCS#1 block formatting is evident from this. If this was done using encrypt and decrypt the block would have been of type 2 (the second byte) and random padding data visible instead of the 0xff bytes.
It is possible to analyse the signature of certificates using this command in conjunction with openssl-asn1parse(1). Consider the self signed example in certs/pca-cert.pem. Running openssl-asn1parse(1) as follows yields:
openssl
asn1parse -in pca-cert.pem
0:d=0 hl=4 l= 742 cons: SEQUENCE
4:d=1 hl=4 l= 591 cons: SEQUENCE
8:d=2 hl=2 l= 3 cons: cont [ 0 ]
10:d=3 hl=2 l= 1 prim: INTEGER :02
13:d=2 hl=2 l= 1 prim: INTEGER :00
16:d=2 hl=2 l= 13 cons: SEQUENCE
18:d=3 hl=2 l= 9 prim: OBJECT :md5WithRSAEncryption
29:d=3 hl=2 l= 0 prim: NULL
31:d=2 hl=2 l= 92 cons: SEQUENCE
33:d=3 hl=2 l= 11 cons: SET
35:d=4 hl=2 l= 9 cons: SEQUENCE
37:d=5 hl=2 l= 3 prim: OBJECT :countryName
42:d=5 hl=2 l= 2 prim: PRINTABLESTRING :AU
....
599:d=1 hl=2 l= 13 cons: SEQUENCE
601:d=2 hl=2 l= 9 prim: OBJECT :md5WithRSAEncryption
612:d=2 hl=2 l= 0 prim: NULL
614:d=1 hl=3 l= 129 prim: BIT STRING
The final BIT STRING contains the actual signature. It can be extracted with:
openssl asn1parse -in pca-cert.pem -out sig -noout -strparse 614
The certificate public key can be extracted with:
openssl x509 -in test/testx509.pem -pubkey -noout >pubkey.pem
The signature can be analysed with:
openssl rsautl
-in sig -verify -asn1parse -inkey pubkey.pem -pubin
0:d=0 hl=2 l= 32 cons: SEQUENCE
2:d=1 hl=2 l= 12 cons: SEQUENCE
4:d=2 hl=2 l= 8 prim: OBJECT :md5
14:d=2 hl=2 l= 0 prim: NULL
16:d=1 hl=2 l= 16 prim: OCTET STRING
0000 - f3 46 9e aa 1a 4a 73 c9-37 ea 93 00 48 25 08 b5
.F...Js.7...H%..
This is the parsed version of an ASN1 DigestInfo structure. It can be seen that the digest used was md5. The actual part of the certificate that was signed can be extracted with:
openssl asn1parse -in pca-cert.pem -out tbs -noout -strparse 4
and its digest computed with:
openssl md5 -c
tbs
MD5(tbs)=
f3:46:9e:aa:1a:4a:73:c9:37:ea:93:00:48:25:08:b5
which it can be seen agrees with the recovered value above.
SEE ALSO
openssl(1), openssl-pkeyutl(1), openssl-dgst(1), openssl-rsa(1), openssl-genrsa(1)
HISTORY
This command was deprecated in OpenSSL 3.0.
The -engine option was deprecated in OpenSSL 3.0.
COPYRIGHT
Copyright 2000-2023 The OpenSSL Project Authors. All Rights Reserved.
Licensed under the Apache License 2.0 (the "License"). You may not use this file except in compliance with the License. You can obtain a copy in the file LICENSE in the source distribution or at <https://www.openssl.org/source/license.html>;.