NAME
reference_element - reference element (rheolef-7.2)
DESCRIPTION
The reference_element class defines all supported types of geometrical elements in zero, one, two and three dimensions. Each supported element is represented by a letter:
| 
 •  | 
 p: point(6) (dimension 0)  | 
|||
| 
 •  | 
 e: edge(6) (dimension 1)  | 
|||
| 
 •  | 
 t: triangle(6) (dimension 2)  | 
|||
| 
 •  | 
 q: quadrangle(6) (dimension 2)  | 
|||
| 
 •  | 
 T: tetrahedron(6) (dimension 3)  | 
|||
| 
 •  | 
 P: prism(6) (dimension 3)  | 
|||
| 
 •  | 
 H: hexahedron(6) (dimension 3)  | 
IMPLEMENTATION
This documentation has been generated from file fem/geo_element/reference_element.h
class
reference_element { 
public:
// typedefs:
typedef
std::vector<int>::size_type size_type; 
typedef size_type variant_type;
static const
variant_type 
p = 0, 
e = 1, 
t = 2, 
q = 3, 
T = 4, 
P = 5, 
H = 6, 
max_variant = 7;
static const size_type max_side_by_variant = 6;
// allocators/deallocators:
reference_element
(variant_type x = max_variant) 
: _x(x) { assert_macro (x >= 0 && x <=
max_variant, "invalid type " << x); }
// initializers:
void
set_variant (variant_type x) { _x = x; } 
void set_variant (size_type n_vertex, size_type dim) { _x =
variant (n_vertex, dim); } 
void set_name (char name);
// accessors:
variant_type
variant() const { return _x; } 
char name() const { return _name[_x % max_variant]; } 
size_type dimension() const { return _dimension[_x]; } 
size_type size() const { return _n_vertex[_x]; } 
size_type n_vertex() const { return _n_vertex[_x]; } 
size_type n_side() const { return dimension() > 0 ?
n_subgeo (variant(), dimension()-1) : 0; } 
size_type n_edge() const { return n_subgeo(1); } 
size_type n_face() const { return n_subgeo(2); } 
size_type n_subgeo_by_variant (size_type subgeo_variant)
const { 
return n_subgeo_by_variant(variant(), subgeo_variant); }
size_type
n_subgeo(size_type subgeo_dim) const { return n_subgeo
(variant(), subgeo_dim); } 
reference_element subgeo (size_type subgeo_dim, size_type
loc_isid) const { 
if (dimension() == 0) return
reference_element(reference_element::p); 
if (dimension() == subgeo_dim) return *this; 
reference_element hat_S; 
size_type subgeo_n_vertex = subgeo_size (subgeo_dim,
loc_isid); 
hat_S.set_variant (subgeo_n_vertex, subgeo_dim); 
return hat_S; 
} 
reference_element side (size_type loc_isid) const { return
subgeo (dimension()-1, loc_isid); } 
size_type subgeo_size (size_type subgeo_dim, size_type
loc_isid) const { 
return subgeo_n_node (_x, 1, subgeo_dim, loc_isid); } 
size_type subgeo_local_vertex(size_type subgeo_dim,
size_type loc_isid, size_type loc_jsidvert) const { 
return subgeo_local_node (_x, 1, subgeo_dim, loc_isid,
loc_jsidvert); } 
size_type local_subgeo_index2index_by_variant (size_type
subgeo_variant, size_type i) const { 
return (variant() == P && subgeo_variant == q) ? i-2
: i; }
// TODO: use
template<class T> instead of Float 
const point_basic<Float>& vertex (size_type iloc)
const; 
friend Float measure (reference_element hat_K); 
Float side_measure (size_type loc_isid) const; 
void side_normal (size_type loc_isid,
point_basic<Float>& hat_n) const;
// helpers:
static
variant_type variant (char name); 
static variant_type variant (size_type n_vertex, size_type
dim); 
static char name (variant_type variant) { return _name
[variant]; } 
static size_type dimension (variant_type variant) { return
_dimension[variant]; } 
static size_type n_vertex (variant_type variant) { return
_n_vertex [variant]; } 
static size_type n_node (variant_type variant, size_type
order);
static
size_type n_sub_edge (variant_type variant); 
static size_type n_sub_face (variant_type variant); 
static size_type n_subgeo (variant_type variant, size_type
subgeo_dim); 
static size_type subgeo_n_node (variant_type variant,
size_type order, size_type subgeo_dim, size_type loc_isid);
static size_type subgeo_local_node (variant_type variant,
size_type order, size_type subgeo_dim, size_type loc_isid,
size_type loc_jsidnod);
static
variant_type first_variant_by_dimension (size_type dim) {
return _first_variant_by_dimension[dim]; } 
static variant_type last_variant_by_dimension (size_type
dim) { 
return _first_variant_by_dimension[dim+1]; }
static
size_type first_inod_by_variant (variant_type variant,
size_type order, variant_type subgeo_variant); 
static size_type last_inod_by_variant (variant_type variant,
size_type order, variant_type subgeo_variant) 
{ return first_inod_by_variant (variant, order,
subgeo_variant+1); } 
static size_type first_inod (variant_type variant, size_type
order, size_type subgeo_dim) 
{ return first_inod_by_variant (variant, order,
first_variant_by_dimension(subgeo_dim)); } 
static size_type last_inod (variant_type variant, size_type
order, size_type subgeo_dim) 
{ return first_inod_by_variant (variant, order,
last_variant_by_dimension(subgeo_dim)); } 
static void init_local_nnode_by_variant (size_type order,
std::array<size_type,reference_element::max_variant>&
loc_nnod_by_variant);
static
size_type n_subgeo_by_variant (size_type variant, size_type
subgeo_variant) 
{ return _n_subgeo_by_variant [variant] [subgeo_variant];
}
};
AUTHOR
Pierre Saramito <Pierre.Saramito [AT] imag.fr>
COPYRIGHT
Copyright (C) 2000-2018 Pierre Saramito <Pierre.Saramito [AT] imag.fr> GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.html>. This is free software: you are free to change and redistribute it. There is NO WARRANTY, to the extent permitted by law.