NAME
form - finite element bilinear form (rheolef-7.2)
DESCRIPTION
The form class groups four sparse matrix, associated to a bilinear form defined on two finite element spaces:
a: Uh*Vh
----> IR
(uh,vh) +---> a(uh,vh)
The A operator associated to the bilinear form is defined by:
A: Uh ---->
Vh
uh +---> A*uh
where uh is a field(2), and vh=A*uh in Vh is such that a(uh,vh)=dual(A*uh,vh) for all vh in Vh and where dual(.,.) denotes the duality product between Vh and its dual. Since Vh is a finite dimensional space, its dual is identified to Vh itself and the duality product is the euclidean product in IR^dim(Vh). Also, the linear operator can be represented by a matrix.
In practice, bilinear forms are created by using the integrate(3) function.
ALGEBRA
Forms, as matrix, support standard algebra. Adding or subtracting two forms writes a+b and a-b, respectively, while multiplying by a scalar lambda writes lambda*a and multiplying two forms writes a*b. Also, multiplying a form by a field uh writes a*uh. The form inversion is not as direct as e.g. as inv(a), since forms are very large matrix in practice: form inversion can be obtained via the solver(4) class. A notable exception is the case of block-diagonal forms at the element level: in that case, a direct inversion is possible during the assembly process, see integrate_option(3).
REPRESENTATION
The degrees of freedom (see space(2)) are splited between unknowns and blocked, i.e. uh=[uh.u,uh.b] for any field uh in Uh. Conversely, vh=[vh.u,vh.b] for any field vh in Vh. Then, the form-field vh=a*uh operation is formally equivalent to the following matrix-vector block operations:
[ vh.u ] [ a.uu
a.ub ] [ uh.u ]
[ ] = [ ] [ ]
[ vh.b ] [ a.bu a.bb ] [ uh.n ]
or, after expansion:
vh.u =
a.uu*uh.u + a.ub*vh.b
vh.b = a.bu*uh.b + a.bb*vh.b
i.e. the A matrix also admits a 2x2 block structure. Then, the form class is represented by four sparse matrix and the csr(4) compressed format is used. Note that the previous formal relations for vh=a*uh writes equivalently within the Rheolef library as:
vh.set_u() =
a.uu()*uh.u() + a.ub()*uh.b();
vh.set_b() = a.bu()*uh.u() + a.bb()*uh.b();
IMPLEMENTATION
This documentation has been generated from file main/lib/form.h
The form class is simply an alias to the form_basic class
typedef form_basic<Float,rheo_default_memory_model> form;
The form_basic class provides an interface to four sparse matrix:
template<class
T, class M>
class form_basic {
public :
// typedefs:
typedef
typename csr<T,M>::size_type size_type;
typedef T value_type;
typedef typename scalar_traits<T>::type float_type;
typedef geo_basic<float_type,M> geo_type;
typedef space_basic<float_type,M> space_type;
// allocator/deallocator:
form_basic ();
form_basic (const form_basic<T,M>&);
form_basic<T,M>& operator= (const
form_basic<T,M>&);
template<class
Expr, class Sfinae = typename
std::enable_if<details::is_form_lazy<Expr>::value,
Expr>::type>
form_basic (const Expr&);
template<class
Expr, class Sfinae = typename
std::enable_if<details::is_form_lazy<Expr>::value,
Expr>::type>
form_basic<T,M>& operator= (const Expr&);
// allocators from initializer list (c++ 2011):
form_basic
(const
std::initializer_list<details::form_concat_value<T,M>
>& init_list);
form_basic (const
std::initializer_list<details::form_concat_line
<T,M> >& init_list);
// accessors:
const
space_type& get_first_space() const;
const space_type& get_second_space() const;
const geo_type& get_geo() const;
bool is_symmetric() const;
void set_symmetry (bool is_symm = true) const;
bool is_definite_positive() const;
void set_definite_positive (bool is_dp = true) const;
bool is_symmetric_definite_positive() const;
void set_symmetric_definite_positive() const;
const communicator& comm() const;
// linear algebra:
form_basic<T,M>
operator+ (const form_basic<T,M>& b) const;
form_basic<T,M> operator- (const
form_basic<T,M>& b) const;
form_basic<T,M> operator* (const
form_basic<T,M>& b) const;
form_basic<T,M>& operator*= (const T& lambda);
field_basic<T,M> operator* (const
field_basic<T,M>& xh) const;
field_basic<T,M> trans_mult (const
field_basic<T,M>& yh) const;
float_type operator () (const field_basic<T,M>&
uh, const field_basic<T,M>& vh) const;
// io:
odiststream&
put (odiststream& ops, bool show_partition = true)
const;
void dump (std::string name) const;
// accessors & modifiers to unknown & blocked parts:
const
csr<T,M>& uu() const { return _uu; }
const csr<T,M>& ub() const { return _ub; }
const csr<T,M>& bu() const { return _bu; }
const csr<T,M>& bb() const { return _bb; }
csr<T,M>& set_uu() { return _uu; }
csr<T,M>& set_ub() { return _ub; }
csr<T,M>& set_bu() { return _bu; }
csr<T,M>& set_bb() { return _bb; }
};
template<class T, class M> form_basic<T,M> trans
(const form_basic<T,M>& a);
template<class T, class M> field_basic<T,M> diag
(const form_basic<T,M>& a);
template<class T, class M> form_basic<T,M> diag
(const field_basic<T,M>& dh);
AUTHOR
Pierre Saramito <Pierre.Saramito [AT] imag.fr>
COPYRIGHT
Copyright (C) 2000-2018 Pierre Saramito <Pierre.Saramito [AT] imag.fr> GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.html>. This is free software: you are free to change and redistribute it. There is NO WARRANTY, to the extent permitted by law.