Manpages

NAME

ffmpeg-filters - FFmpeg filters

DESCRIPTION

This document describes filters, sources, and sinks provided by the libavfilter library.

FILTERING INTRODUCTION

Filtering in FFmpeg is enabled through the libavfilter library.

In libavfilter, a filter can have multiple inputs and multiple outputs. To illustrate the sorts of things that are possible, we consider the following filtergraph.

[main]
input --> split ---------------------> overlay --> output
| ^
|[tmp] [flip]|
+-----> crop --> vflip -------+

This filtergraph splits the input stream in two streams, then sends one stream through the crop filter and the vflip filter, before merging it back with the other stream by overlaying it on top. You can use the following command to achieve this:

ffmpeg -i INPUT -vf "split [main][tmp]; [tmp] crop=iw:ih/2:0:0, vflip [flip]; [main][flip] overlay=0:H/2" OUTPUT

The result will be that the top half of the video is mirrored onto the bottom half of the output video.

Filters in the same linear chain are separated by commas, and distinct linear chains of filters are separated by semicolons. In our example, crop,vflip are in one linear chain, split and overlay are separately in another. The points where the linear chains join are labelled by names enclosed in square brackets. In the example, the split filter generates two outputs that are associated to the labels [main] and [tmp].

The stream sent to the second output of split, labelled as [tmp], is processed through the crop filter, which crops away the lower half part of the video, and then vertically flipped. The overlay filter takes in input the first unchanged output of the split filter (which was labelled as [main]), and overlay on its lower half the output generated by the crop,vflip filterchain.

Some filters take in input a list of parameters: they are specified after the filter name and an equal sign, and are separated from each other by a colon.

There exist so-called source filters that do not have an audio/video input, and sink filters that will not have audio/video output.

GRAPH

The graph2dot program included in the FFmpeg tools directory can be used to parse a filtergraph description and issue a corresponding textual representation in the dot language.

Invoke the command:

graph2dot -h

to see how to use graph2dot.

You can then pass the dot description to the dot program (from the graphviz suite of programs) and obtain a graphical representation of the filtergraph.

For example the sequence of commands:

echo <GRAPH_DESCRIPTION> | \
tools/graph2dot -o graph.tmp && \
dot -Tpng graph.tmp -o graph.png && \
display graph.png

can be used to create and display an image representing the graph described by the GRAPH_DESCRIPTION string. Note that this string must be a complete self-contained graph, with its inputs and outputs explicitly defined. For example if your command line is of the form:

ffmpeg -i infile -vf scale=640:360 outfile

your GRAPH_DESCRIPTION string will need to be of the form:

nullsrc,scale=640:360,nullsink

you may also need to set the nullsrc parameters and add a format filter in order to simulate a specific input file.

FILTERGRAPH DESCRIPTION

A filtergraph is a directed graph of connected filters. It can contain cycles, and there can be multiple links between a pair of filters. Each link has one input pad on one side connecting it to one filter from which it takes its input, and one output pad on the other side connecting it to one filter accepting its output.

Each filter in a filtergraph is an instance of a filter class registered in the application, which defines the features and the number of input and output pads of the filter.

A filter with no input pads is called a "source", and a filter with no output pads is called a "sink".

Filtergraph syntax
A filtergraph has a textual representation, which is recognized by the -filter/-vf/-af and -filter_complex options in ffmpeg and -vf/-af in ffplay, and by the avfilter_graph_parse_ptr() function defined in libavfilter/avfilter.h.

A filterchain consists of a sequence of connected filters, each one connected to the previous one in the sequence. A filterchain is represented by a list of ","-separated filter descriptions.

A filtergraph consists of a sequence of filterchains. A sequence of filterchains is represented by a list of ";"-separated filterchain descriptions.

A filter is represented by a string of the form: [in_link_1]...[in_link_N]filter_name@id=arguments[out_link_1]...[out_link_M]

filter_name is the name of the filter class of which the described filter is an instance of, and has to be the name of one of the filter classes registered in the program optionally followed by "@id". The name of the filter class is optionally followed by a string "=arguments".

arguments is a string which contains the parameters used to initialize the filter instance. It may have one of two forms:

A ’:’-separated list of key=value pairs.

A ’:’-separated list of value. In this case, the keys are assumed to be the option names in the order they are declared. E.g. the "fade" filter declares three options in this order -- type, start_frame and nb_frames. Then the parameter list in:0:30 means that the value in is assigned to the option type, 0 to start_frame and 30 to nb_frames.

A ’:’-separated list of mixed direct value and long key=value pairs. The direct value must precede the key=value pairs, and follow the same constraints order of the previous point. The following key=value pairs can be set in any preferred order.

If the option value itself is a list of items (e.g. the "format" filter takes a list of pixel formats), the items in the list are usually separated by |.

The list of arguments can be quoted using the character as initial and ending mark, and the character \ for escaping the characters within the quoted text; otherwise the argument string is considered terminated when the next special character (belonging to the set []=;,) is encountered.

A special syntax implemented in the ffmpeg CLI tool allows loading option values from files. This is done be prepending a slash ’/’ to the option name, then the supplied value is interpreted as a path from which the actual value is loaded. E.g.

ffmpeg -i <INPUT> -vf drawtext=/text=/tmp/some_text <OUTPUT>

will load the text to be drawn from /tmp/some_text. API users wishing to implement a similar feature should use the "avfilter_graph_segment_*()" functions together with custom IO code.

The name and arguments of the filter are optionally preceded and followed by a list of link labels. A link label allows one to name a link and associate it to a filter output or input pad. The preceding labels in_link_1 ... in_link_N, are associated to the filter input pads, the following labels out_link_1 ... out_link_M, are associated to the output pads.

When two link labels with the same name are found in the filtergraph, a link between the corresponding input and output pad is created.

If an output pad is not labelled, it is linked by default to the first unlabelled input pad of the next filter in the filterchain. For example in the filterchain

nullsrc, split[L1], [L2]overlay, nullsink

the split filter instance has two output pads, and the overlay filter instance two input pads. The first output pad of split is labelled "L1", the first input pad of overlay is labelled "L2", and the second output pad of split is linked to the second input pad of overlay, which are both unlabelled.

In a filter description, if the input label of the first filter is not specified, "in" is assumed; if the output label of the last filter is not specified, "out" is assumed.

In a complete filterchain all the unlabelled filter input and output pads must be connected. A filtergraph is considered valid if all the filter input and output pads of all the filterchains are connected.

Leading and trailing whitespaces (space, tabs, or line feeds) separating tokens in the filtergraph specification are ignored. This means that the filtergraph can be expressed using empty lines and spaces to improve redability.

For example, the filtergraph:

testsrc,split[L1],hflip[L2];[L1][L2] hstack

can be represented as:

testsrc,
split [L1], hflip [L2];
[L1][L2] hstack

Libavfilter will automatically insert scale filters where format conversion is required. It is possible to specify swscale flags for those automatically inserted scalers by prepending "sws_flags=flags;" to the filtergraph description.

Here is a BNF description of the filtergraph syntax:

<NAME> ::= sequence of alphanumeric characters and '_'
<FILTER_NAME> ::= <NAME>["@"<NAME>]
<LINKLABEL> ::= "[" <NAME> "]"
<LINKLABELS> ::= <LINKLABEL> [<LINKLABELS>]
<FILTER_ARGUMENTS> ::= sequence of chars (possibly quoted)
<FILTER> ::= [<LINKLABELS>] <FILTER_NAME> ["=" <FILTER_ARGUMENTS>] [<LINKLABELS>]
<FILTERCHAIN> ::= <FILTER> [,<FILTERCHAIN>]
<FILTERGRAPH> ::= [sws_flags=<flags>;] <FILTERCHAIN> [;<FILTERGRAPH>]

Notes on filtergraph escaping
Filtergraph description composition entails several levels of escaping. See the "Quoting and escaping" section in the ffmpeg-utils(1) manual for more information about the employed escaping procedure.

A first level escaping affects the content of each filter option value, which may contain the special character ":" used to separate values, or one of the escaping characters "\'".

A second level escaping affects the whole filter description, which may contain the escaping characters "\'" or the special characters "[],;" used by the filtergraph description.

Finally, when you specify a filtergraph on a shell commandline, you need to perform a third level escaping for the shell special characters contained within it.

For example, consider the following string to be embedded in the drawtext filter description text value:

this is a 'string': may contain one, or more, special characters

This string contains the "'" special escaping character, and the ":" special character, so it needs to be escaped in this way:

text=this is a \'string\'\: may contain one, or more, special characters

A second level of escaping is required when embedding the filter description in a filtergraph description, in order to escape all the filtergraph special characters. Thus the example above becomes:

drawtext=text=this is a \\\'string\\\'\\: may contain one\, or more\, special characters

(note that in addition to the "\'" escaping special characters, also "," needs to be escaped).

Finally an additional level of escaping is needed when writing the filtergraph description in a shell command, which depends on the escaping rules of the adopted shell. For example, assuming that "\" is special and needs to be escaped with another "\", the previous string will finally result in:

-vf "drawtext=text=this is a \\\\\\'string\\\\\\'\\\\: may contain one\\, or more\\, special characters"

In order to avoid cumbersome escaping when using a commandline tool accepting a filter specification as input, it is advisable to avoid direct inclusion of the filter or options specification in the shell.

For example, in case of the drawtext filter, you might prefer to use the textfile option in place of text to specify the text to render.

When using the ffmpeg tool, you might consider to use the -filter_script option or -filter_complex_script option.

TIMELINE EDITING

Some filters support a generic enable option. For the filters supporting timeline editing, this option can be set to an expression which is evaluated before sending a frame to the filter. If the evaluation is non-zero, the filter will be enabled, otherwise the frame will be sent unchanged to the next filter in the filtergraph.

The expression accepts the following values:

t

timestamp expressed in seconds, NAN if the input timestamp is unknown

n

sequential number of the input frame, starting from 0

pos

the position in the file of the input frame, NAN if unknown; deprecated, do not use

w

h

width and height of the input frame if video

Additionally, these filters support an enable command that can be used to re-define the expression.

Like any other filtering option, the enable option follows the same rules.

For example, to enable a blur filter (smartblur) from 10 seconds to 3 minutes, and a curves filter starting at 3 seconds:

smartblur = enable='between(t,10,3*60)',
curves = enable='gte(t,3)' : preset=cross_process

See "ffmpeg -filters" to view which filters have timeline support.

CHANGING OPTIONS AT RUNTIME WITH A COMMAND

Some options can be changed during the operation of the filter using a command. These options are marked ’T’ on the output of ffmpeg -h filter=<name of filter>. The name of the command is the name of the option and the argument is the new value.

OPTIONS FOR FILTERS WITH SEVERAL INPUTS

Some filters with several inputs support a common set of options. These options can only be set by name, not with the short notation.
eof_action

The action to take when EOF is encountered on the secondary input; it accepts one of the following values:
repeat

Repeat the last frame (the default).

endall

End both streams.

pass

Pass the main input through.

shortest

If set to 1, force the output to terminate when the shortest input terminates. Default value is 0.

repeatlast

If set to 1, force the filter to extend the last frame of secondary streams until the end of the primary stream. A value of 0 disables this behavior. Default value is 1.

ts_sync_mode

How strictly to sync streams based on secondary input timestamps; it accepts one of the following values:
default

Frame from secondary input with the nearest lower or equal timestamp to the primary input frame.

nearest

Frame from secondary input with the absolute nearest timestamp to the primary input frame.

AUDIO FILTERS

When you configure your FFmpeg build, you can disable any of the existing filters using "--disable-filters". The configure output will show the audio filters included in your build.

Below is a description of the currently available audio filters.

acompressor
A compressor is mainly used to reduce the dynamic range of a signal. Especially modern music is mostly compressed at a high ratio to improve the overall loudness. It’s done to get the highest attention of a listener, "fatten" the sound and bring more "power" to the track. If a signal is compressed too much it may sound dull or "dead" afterwards or it may start to "pump" (which could be a powerful effect but can also destroy a track completely). The right compression is the key to reach a professional sound and is the high art of mixing and mastering. Because of its complex settings it may take a long time to get the right feeling for this kind of effect.

Compression is done by detecting the volume above a chosen level "threshold" and dividing it by the factor set with "ratio". So if you set the threshold to -12dB and your signal reaches -6dB a ratio of 2:1 will result in a signal at -9dB. Because an exact manipulation of the signal would cause distortion of the waveform the reduction can be levelled over the time. This is done by setting "Attack" and "Release". "attack" determines how long the signal has to rise above the threshold before any reduction will occur and "release" sets the time the signal has to fall below the threshold to reduce the reduction again. Shorter signals than the chosen attack time will be left untouched. The overall reduction of the signal can be made up afterwards with the "makeup" setting. So compressing the peaks of a signal about 6dB and raising the makeup to this level results in a signal twice as loud than the source. To gain a softer entry in the compression the "knee" flattens the hard edge at the threshold in the range of the chosen decibels.

The filter accepts the following options:
level_in

Set input gain. Default is 1. Range is between 0.015625 and 64.

mode

Set mode of compressor operation. Can be "upward" or "downward". Default is "downward".

threshold

If a signal of stream rises above this level it will affect the gain reduction. By default it is 0.125. Range is between 0.00097563 and 1.

ratio

Set a ratio by which the signal is reduced. 1:2 means that if the level rose 4dB above the threshold, it will be only 2dB above after the reduction. Default is 2. Range is between 1 and 20.

attack

Amount of milliseconds the signal has to rise above the threshold before gain reduction starts. Default is 20. Range is between 0.01 and 2000.

release

Amount of milliseconds the signal has to fall below the threshold before reduction is decreased again. Default is 250. Range is between 0.01 and 9000.

makeup

Set the amount by how much signal will be amplified after processing. Default is 1. Range is from 1 to 64.

knee

Curve the sharp knee around the threshold to enter gain reduction more softly. Default is 2.82843. Range is between 1 and 8.

link

Choose if the "average" level between all channels of input stream or the louder("maximum") channel of input stream affects the reduction. Default is "average".

detection

Should the exact signal be taken in case of "peak" or an RMS one in case of "rms". Default is "rms" which is mostly smoother.

mix

How much to use compressed signal in output. Default is 1. Range is between 0 and 1.

Commands

This filter supports the all above options as commands.

acontrast
Simple audio dynamic range compression/expansion filter.

The filter accepts the following options:
contrast

Set contrast. Default is 33. Allowed range is between 0 and 100.

acopy
Copy the input audio source unchanged to the output. This is mainly useful for testing purposes.

acrossfade
Apply cross fade from one input audio stream to another input audio stream. The cross fade is applied for specified duration near the end of first stream.

The filter accepts the following options:
nb_samples, ns

Specify the number of samples for which the cross fade effect has to last. At the end of the cross fade effect the first input audio will be completely silent. Default is 44100.

duration, d

Specify the duration of the cross fade effect. See the Time duration section in the ffmpeg-utils(1) manual for the accepted syntax. By default the duration is determined by nb_samples. If set this option is used instead of nb_samples.

overlap, o

Should first stream end overlap with second stream start. Default is enabled.

curve1

Set curve for cross fade transition for first stream.

curve2

Set curve for cross fade transition for second stream.

For description of available curve types see afade filter description.

Examples

Cross fade from one input to another:

ffmpeg -i first.flac -i second.flac -filter_complex acrossfade=d=10:c1=exp:c2=exp output.flac

Cross fade from one input to another but without overlapping:

ffmpeg -i first.flac -i second.flac -filter_complex acrossfade=d=10:o=0:c1=exp:c2=exp output.flac

acrossover
Split audio stream into several bands.

This filter splits audio stream into two or more frequency ranges. Summing all streams back will give flat output.

The filter accepts the following options:
split

Set split frequencies. Those must be positive and increasing.

order

Set filter order for each band split. This controls filter roll-off or steepness of filter transfer function. Available values are:

2nd

12 dB per octave.

4th

24 dB per octave.

6th

36 dB per octave.

8th

48 dB per octave.

10th

60 dB per octave.

12th

72 dB per octave.

14th

84 dB per octave.

16th

96 dB per octave.

18th

108 dB per octave.

20th

120 dB per octave.

Default is 4th.

level

Set input gain level. Allowed range is from 0 to 1. Default value is 1.

gains

Set output gain for each band. Default value is 1 for all bands.

precision

Set which precision to use when processing samples.
auto

Auto pick internal sample format depending on other filters.

float

Always use single-floating point precision sample format.

double

Always use double-floating point precision sample format.

Default value is "auto".

Examples

Split input audio stream into two bands (low and high) with split frequency of 1500 Hz, each band will be in separate stream:

ffmpeg -i in.flac -filter_complex 'acrossover=split=1500[LOW][HIGH]' -map '[LOW]' low.wav -map '[HIGH]' high.wav

Same as above, but with higher filter order:

ffmpeg -i in.flac -filter_complex 'acrossover=split=1500:order=8th[LOW][HIGH]' -map '[LOW]' low.wav -map '[HIGH]' high.wav

Same as above, but also with additional middle band (frequencies between 1500 and 8000):

ffmpeg -i in.flac -filter_complex 'acrossover=split=1500 8000:order=8th[LOW][MID][HIGH]' -map '[LOW]' low.wav -map '[MID]' mid.wav -map '[HIGH]' high.wav

acrusher
Reduce audio bit resolution.

This filter is bit crusher with enhanced functionality. A bit crusher is used to audibly reduce number of bits an audio signal is sampled with. This doesn’t change the bit depth at all, it just produces the effect. Material reduced in bit depth sounds more harsh and "digital". This filter is able to even round to continuous values instead of discrete bit depths. Additionally it has a D/C offset which results in different crushing of the lower and the upper half of the signal. An Anti-Aliasing setting is able to produce "softer" crushing sounds.

Another feature of this filter is the logarithmic mode. This setting switches from linear distances between bits to logarithmic ones. The result is a much more "natural" sounding crusher which doesn’t gate low signals for example. The human ear has a logarithmic perception, so this kind of crushing is much more pleasant. Logarithmic crushing is also able to get anti-aliased.

The filter accepts the following options:
level_in

Set level in.

level_out

Set level out.

bits

Set bit reduction.

mix

Set mixing amount.

mode

Can be linear: "lin" or logarithmic: "log".

dc

Set DC.

aa

Set anti-aliasing.

samples

Set sample reduction.

lfo

Enable LFO. By default disabled.

lforange

Set LFO range.

lforate

Set LFO rate.

Commands

This filter supports the all above options as commands.

acue
Delay audio filtering until a given wallclock timestamp. See the cue filter.

adeclick
Remove impulsive noise from input audio.

Samples detected as impulsive noise are replaced by interpolated samples using autoregressive modelling.
window, w

Set window size, in milliseconds. Allowed range is from 10 to 100. Default value is 55 milliseconds. This sets size of window which will be processed at once.

overlap, o

Set window overlap, in percentage of window size. Allowed range is from 50 to 95. Default value is 75 percent. Setting this to a very high value increases impulsive noise removal but makes whole process much slower.

arorder, a

Set autoregression order, in percentage of window size. Allowed range is from 0 to 25. Default value is 2 percent. This option also controls quality of interpolated samples using neighbour good samples.

threshold, t

Set threshold value. Allowed range is from 1 to 100. Default value is 2. This controls the strength of impulsive noise which is going to be removed. The lower value, the more samples will be detected as impulsive noise.

burst, b

Set burst fusion, in percentage of window size. Allowed range is 0 to 10. Default value is 2. If any two samples detected as noise are spaced less than this value then any sample between those two samples will be also detected as noise.

method, m

Set overlap method.

It accepts the following values:
add, a

Select overlap-add method. Even not interpolated samples are slightly changed with this method.

save, s

Select overlap-save method. Not interpolated samples remain unchanged.

Default value is "a".

adeclip
Remove clipped samples from input audio.

Samples detected as clipped are replaced by interpolated samples using autoregressive modelling.
window, w

Set window size, in milliseconds. Allowed range is from 10 to 100. Default value is 55 milliseconds. This sets size of window which will be processed at once.

overlap, o

Set window overlap, in percentage of window size. Allowed range is from 50 to 95. Default value is 75 percent.

arorder, a

Set autoregression order, in percentage of window size. Allowed range is from 0 to 25. Default value is 8 percent. This option also controls quality of interpolated samples using neighbour good samples.

threshold, t

Set threshold value. Allowed range is from 1 to 100. Default value is 10. Higher values make clip detection less aggressive.

hsize, n

Set size of histogram used to detect clips. Allowed range is from 100 to 9999. Default value is 1000. Higher values make clip detection less aggressive.

method, m

Set overlap method.

It accepts the following values:
add, a

Select overlap-add method. Even not interpolated samples are slightly changed with this method.

save, s

Select overlap-save method. Not interpolated samples remain unchanged.

Default value is "a".

adecorrelate
Apply decorrelation to input audio stream.

The filter accepts the following options:
stages

Set decorrelation stages of filtering. Allowed range is from 1 to 16. Default value is 6.

seed

Set random seed used for setting delay in samples across channels.

adelay
Delay one or more audio channels.

Samples in delayed channel are filled with silence.

The filter accepts the following option:
delays

Set list of delays in milliseconds for each channel separated by ’|’. Unused delays will be silently ignored. If number of given delays is smaller than number of channels all remaining channels will not be delayed. If you want to delay exact number of samples, append ’S’ to number. If you want instead to delay in seconds, append ’s’ to number.

all

Use last set delay for all remaining channels. By default is disabled. This option if enabled changes how option "delays" is interpreted.

Examples

Delay first channel by 1.5 seconds, the third channel by 0.5 seconds and leave the second channel (and any other channels that may be present) unchanged.

adelay=1500|0|500

Delay second channel by 500 samples, the third channel by 700 samples and leave the first channel (and any other channels that may be present) unchanged.

adelay=0|500S|700S

Delay all channels by same number of samples:

adelay=delays=64S:all=1

adenorm
Remedy denormals in audio by adding extremely low-level noise.

This filter shall be placed before any filter that can produce denormals.

A description of the accepted parameters follows.
level

Set level of added noise in dB. Default is -351. Allowed range is from -451 to -90.

type

Set type of added noise.

dc

Add DC signal.

ac

Add AC signal.

square

Add square signal.

pulse

Add pulse signal.

Default is "dc".

Commands

This filter supports the all above options as commands.

aderivative, aintegral
Compute derivative/integral of audio stream.

Applying both filters one after another produces original audio.

adrc
Apply spectral dynamic range controller filter to input audio stream.

A description of the accepted options follows.
transfer

Set the transfer expression.

The expression can contain the following constants:

ch

current channel number

sn

current sample number

nb_channels

number of channels

t

timestamp expressed in seconds

sr

sample rate

p

current frequency power value, in dB

f

current frequency in Hz

Default value is "p".

attack

Set the attack in milliseconds. Default is 50 milliseconds. Allowed range is from 1 to 1000 milliseconds.

release

Set the release in milliseconds. Default is 100 milliseconds. Allowed range is from 5 to 2000 milliseconds.

channels

Set which channels to filter, by default "all" channels in audio stream are filtered.

Commands

This filter supports the all above options as commands.

Examples

Apply spectral compression to all frequencies with threshold of -50 dB and 1:6 ratio:

adrc=transfer='if(gt(p,-50),-50+(p-(-50))/6,p)':attack=50:release=100

Similar to above but with 1:2 ratio and filtering only front center channel:

adrc=transfer='if(gt(p,-50),-50+(p-(-50))/2,p)':attack=50:release=100:channels=FC

Apply spectral noise gate to all frequencies with threshold of -85 dB and with short attack time and short release time:

adrc=transfer='if(lte(p,-85),p-800,p)':attack=1:release=5

Apply spectral expansion to all frequencies with threshold of -10 dB and 1:2 ratio:

adrc=transfer='if(lt(p,-10),-10+(p-(-10))*2,p)':attack=50:release=100

Apply limiter to max -60 dB to all frequencies, with attack of 2 ms and release of 10 ms:

adrc=transfer='min(p,-60)':attack=2:release=10

adynamicequalizer
Apply dynamic equalization to input audio stream.

A description of the accepted options follows.
threshold

Set the detection threshold used to trigger equalization. Threshold detection is using detection filter. Default value is 0. Allowed range is from 0 to 100.

dfrequency

Set the detection frequency in Hz used for detection filter used to trigger equalization. Default value is 1000 Hz. Allowed range is between 2 and 1000000 Hz.

dqfactor

Set the detection resonance factor for detection filter used to trigger equalization. Default value is 1. Allowed range is from 0.001 to 1000.

tfrequency

Set the target frequency of equalization filter. Default value is 1000 Hz. Allowed range is between 2 and 1000000 Hz.

tqfactor

Set the target resonance factor for target equalization filter. Default value is 1. Allowed range is from 0.001 to 1000.

attack

Set the amount of milliseconds the signal from detection has to rise above the detection threshold before equalization starts. Default is 20. Allowed range is between 1 and 2000.

release

Set the amount of milliseconds the signal from detection has to fall below the detection threshold before equalization ends. Default is 200. Allowed range is between 1 and 2000.

ratio

Set the ratio by which the equalization gain is raised. Default is 1. Allowed range is between 0 and 30.

makeup

Set the makeup offset by which the equalization gain is raised. Default is 0. Allowed range is between 0 and 100.

range

Set the max allowed cut/boost amount. Default is 50. Allowed range is from 1 to 200.

mode

Set the mode of filter operation, can be one of the following:
listen

Output only isolated detection signal.

cut

Cut frequencies above detection threshold.

boost

Boost frequencies bellow detection threshold.

Default mode is cut.

dftype

Set the type of detection filter, can be one of the following:
bandpass
lowpass
highpass
peak

Default type is bandpass.

tftype

Set the type of target filter, can be one of the following:
bell
lowshelf
highshelf

Default type is bell.

direction

Set processing direction relative to threshold.
downward

Boost/Cut if threshold is higher/lower than detected volume.

upward

Boost/Cut if threshold is lower/higher than detected volume.

Default direction is downward.

auto

Automatically gather threshold from detection filter. By default is disabled. This option is useful to detect threshold in certain time frame of input audio stream, in such case option value is changed at runtime.

Available values are:
disabled

Disable using automatically gathered threshold value.

off

Stop picking threshold value.

on

Start picking threshold value.

precision

Set which precision to use when processing samples.
auto

Auto pick internal sample format depending on other filters.

float

Always use single-floating point precision sample format.

double

Always use double-floating point precision sample format.

Commands

This filter supports the all above options as commands.

adynamicsmooth
Apply dynamic smoothing to input audio stream.

A description of the accepted options follows.
sensitivity

Set an amount of sensitivity to frequency fluctations. Default is 2. Allowed range is from 0 to 1e+06.

basefreq

Set a base frequency for smoothing. Default value is 22050. Allowed range is from 2 to 1e+06.

Commands

This filter supports the all above options as commands.

aecho
Apply echoing to the input audio.

Echoes are reflected sound and can occur naturally amongst mountains (and sometimes large buildings) when talking or shouting; digital echo effects emulate this behaviour and are often used to help fill out the sound of a single instrument or vocal. The time difference between the original signal and the reflection is the "delay", and the loudness of the reflected signal is the "decay". Multiple echoes can have different delays and decays.

A description of the accepted parameters follows.
in_gain

Set input gain of reflected signal. Default is 0.6.

out_gain

Set output gain of reflected signal. Default is 0.3.

delays

Set list of time intervals in milliseconds between original signal and reflections separated by ’|’. Allowed range for each "delay" is "(0 - 90000.0]". Default is 1000.

decays

Set list of loudness of reflected signals separated by ’|’. Allowed range for each "decay" is "(0 - 1.0]". Default is 0.5.

Examples

Make it sound as if there are twice as many instruments as are actually playing:

aecho=0.8:0.88:60:0.4

If delay is very short, then it sounds like a (metallic) robot playing music:

aecho=0.8:0.88:6:0.4

A longer delay will sound like an open air concert in the mountains:

aecho=0.8:0.9:1000:0.3

Same as above but with one more mountain:

aecho=0.8:0.9:1000|1800:0.3|0.25

aemphasis
Audio emphasis filter creates or restores material directly taken from LPs or emphased CDs with different filter curves. E.g. to store music on vinyl the signal has to be altered by a filter first to even out the disadvantages of this recording medium. Once the material is played back the inverse filter has to be applied to restore the distortion of the frequency response.

The filter accepts the following options:
level_in

Set input gain.

level_out

Set output gain.

mode

Set filter mode. For restoring material use "reproduction" mode, otherwise use "production" mode. Default is "reproduction" mode.

type

Set filter type. Selects medium. Can be one of the following:

col

select Columbia.

emi

select EMI.

bsi

select BSI (78RPM).

riaa

select RIAA.

cd

select Compact Disc (CD).

50fm

select 50µs (FM).

75fm

select 75µs (FM).

50kf

select 50µs (FM-KF).

75kf

select 75µs (FM-KF).

Commands

This filter supports the all above options as commands.

aeval
Modify an audio signal according to the specified expressions.

This filter accepts one or more expressions (one for each channel), which are evaluated and used to modify a corresponding audio signal.

It accepts the following parameters:
exprs

Set the ’|’-separated expressions list for each separate channel. If the number of input channels is greater than the number of expressions, the last specified expression is used for the remaining output channels.

channel_layout, c

Set output channel layout. If not specified, the channel layout is specified by the number of expressions. If set to same, it will use by default the same input channel layout.

Each expression in exprs can contain the following constants and functions:

ch

channel number of the current expression

n

number of the evaluated sample, starting from 0

s

sample rate

t

time of the evaluated sample expressed in seconds

nb_in_channels
nb_out_channels

input and output number of channels

val(CH)

the value of input channel with number CH

Note: this filter is slow. For faster processing you should use a dedicated filter.

Examples

Half volume:

aeval=val(ch)/2:c=same

Invert phase of the second channel:

aeval=val(0)|-val(1)

aexciter
An exciter is used to produce high sound that is not present in the original signal. This is done by creating harmonic distortions of the signal which are restricted in range and added to the original signal. An Exciter raises the upper end of an audio signal without simply raising the higher frequencies like an equalizer would do to create a more "crisp" or "brilliant" sound.

The filter accepts the following options:
level_in

Set input level prior processing of signal. Allowed range is from 0 to 64. Default value is 1.

level_out

Set output level after processing of signal. Allowed range is from 0 to 64. Default value is 1.

amount

Set the amount of harmonics added to original signal. Allowed range is from 0 to 64. Default value is 1.

drive

Set the amount of newly created harmonics. Allowed range is from 0.1 to 10. Default value is 8.5.

blend

Set the octave of newly created harmonics. Allowed range is from -10 to 10. Default value is 0.

freq

Set the lower frequency limit of producing harmonics in Hz. Allowed range is from 2000 to 12000 Hz. Default is 7500 Hz.

ceil

Set the upper frequency limit of producing harmonics. Allowed range is from 9999 to 20000 Hz. If value is lower than 10000 Hz no limit is applied.

listen

Mute the original signal and output only added harmonics. By default is disabled.

Commands

This filter supports the all above options as commands.

afade
Apply fade-in/out effect to input audio.

A description of the accepted parameters follows.
type, t

Specify the effect type, can be either "in" for fade-in, or "out" for a fade-out effect. Default is "in".

start_sample, ss

Specify the number of the start sample for starting to apply the fade effect. Default is 0.

nb_samples, ns

Specify the number of samples for which the fade effect has to last. At the end of the fade-in effect the output audio will have the same volume as the input audio, at the end of the fade-out transition the output audio will be silence. Default is 44100.

start_time, st

Specify the start time of the fade effect. Default is 0. The value must be specified as a time duration; see the Time duration section in the ffmpeg-utils(1) manual for the accepted syntax. If set this option is used instead of start_sample.

duration, d

Specify the duration of the fade effect. See the Time duration section in the ffmpeg-utils(1) manual for the accepted syntax. At the end of the fade-in effect the output audio will have the same volume as the input audio, at the end of the fade-out transition the output audio will be silence. By default the duration is determined by nb_samples. If set this option is used instead of nb_samples.

curve

Set curve for fade transition.

It accepts the following values:

tri

select triangular, linear slope (default)

qsin

select quarter of sine wave

hsin

select half of sine wave

esin

select exponential sine wave

log

select logarithmic

ipar

select inverted parabola

qua

select quadratic

cub

select cubic

squ

select square root

cbr

select cubic root

par

select parabola

exp

select exponential

iqsin

select inverted quarter of sine wave

ihsin

select inverted half of sine wave

dese

select double-exponential seat

desi

select double-exponential sigmoid

losi

select logistic sigmoid

sinc

select sine cardinal function

isinc

select inverted sine cardinal function

quat

select quartic

quatr

select quartic root

qsin2

select squared quarter of sine wave

hsin2

select squared half of sine wave

nofade

no fade applied

silence

Set the initial gain for fade-in or final gain for fade-out. Default value is 0.0.

unity

Set the initial gain for fade-out or final gain for fade-in. Default value is 1.0.

Commands

This filter supports the all above options as commands.

Examples

Fade in first 15 seconds of audio:

afade=t=in:ss=0:d=15

Fade out last 25 seconds of a 900 seconds audio:

afade=t=out:st=875:d=25

afftdn
Denoise audio samples with FFT.

A description of the accepted parameters follows.
noise_reduction, nr

Set the noise reduction in dB, allowed range is 0.01 to 97. Default value is 12 dB.

noise_floor, nf

Set the noise floor in dB, allowed range is -80 to -20. Default value is -50 dB.

noise_type, nt

Set the noise type.

It accepts the following values:
white, w

Select white noise.

vinyl, v

Select vinyl noise.

shellac, s

Select shellac noise.

custom, c

Select custom noise, defined in "bn" option.

Default value is white noise.

band_noise, bn

Set custom band noise profile for every one of 15 bands. Bands are separated by ’ ’ or ’|’.

residual_floor, rf

Set the residual floor in dB, allowed range is -80 to -20. Default value is -38 dB.

track_noise, tn

Enable noise floor tracking. By default is disabled. With this enabled, noise floor is automatically adjusted.

track_residual, tr

Enable residual tracking. By default is disabled.

output_mode, om

Set the output mode.

It accepts the following values:
input, i

Pass input unchanged.

output, o

Pass noise filtered out.

noise, n

Pass only noise.

Default value is output.

adaptivity, ad

Set the adaptivity factor, used how fast to adapt gains adjustments per each frequency bin. Value 0 enables instant adaptation, while higher values react much slower. Allowed range is from 0 to 1. Default value is 0.5.

floor_offset, fo

Set the noise floor offset factor. This option is used to adjust offset applied to measured noise floor. It is only effective when noise floor tracking is enabled. Allowed range is from -2.0 to 2.0. Default value is 1.0.

noise_link, nl

Set the noise link used for multichannel audio.

It accepts the following values:
none

Use unchanged channel’s noise floor.

min

Use measured min noise floor of all channels.

max

Use measured max noise floor of all channels.

average

Use measured average noise floor of all channels.

Default value is min.

band_multiplier, bm

Set the band multiplier factor, used how much to spread bands across frequency bins. Allowed range is from 0.2 to 5. Default value is 1.25.

sample_noise, sn

Toggle capturing and measurement of noise profile from input audio.

It accepts the following values:
start, begin

Start sample noise capture.

stop, end

Stop sample noise capture and measure new noise band profile.

Default value is "none".

gain_smooth, gs

Set gain smooth spatial radius, used to smooth gains applied to each frequency bin. Useful to reduce random music noise artefacts. Higher values increases smoothing of gains. Allowed range is from 0 to 50. Default value is 0.

Commands

This filter supports the some above mentioned options as commands.

Examples

Reduce white noise by 10dB, and use previously measured noise floor of -40dB:

afftdn=nr=10:nf=-40

Reduce white noise by 10dB, also set initial noise floor to -80dB and enable automatic tracking of noise floor so noise floor will gradually change during processing:

afftdn=nr=10:nf=-80:tn=1

Reduce noise by 20dB, using noise floor of -40dB and using commands to take noise profile of first 0.4 seconds of input audio:

asendcmd=0.0 afftdn sn start,asendcmd=0.4 afftdn sn stop,afftdn=nr=20:nf=-40

afftfilt
Apply arbitrary expressions to samples in frequency domain.
real

Set frequency domain real expression for each separate channel separated by ’|’. Default is "re". If the number of input channels is greater than the number of expressions, the last specified expression is used for the remaining output channels.

imag

Set frequency domain imaginary expression for each separate channel separated by ’|’. Default is "im".

Each expression in real and imag can contain the following constants and functions:

sr

sample rate

b

current frequency bin number

nb

number of available bins

ch

channel number of the current expression

chs

number of channels

pts

current frame pts

re

current real part of frequency bin of current channel

im

current imaginary part of frequency bin of current channel

real(b, ch)

Return the value of real part of frequency bin at location (bin,channel)

imag(b, ch)

Return the value of imaginary part of frequency bin at location (bin,channel)

win_size

Set window size. Allowed range is from 16 to 131072. Default is 4096

win_func

Set window function.

It accepts the following values:
rect
bartlett
hann, hanning
hamming
blackman
welch
flattop
bharris
bnuttall
bhann
sine
nuttall
lanczos
gauss
tukey
dolph
cauchy
parzen
poisson
bohman
kaiser

Default is "hann".

overlap

Set window overlap. If set to 1, the recommended overlap for selected window function will be picked. Default is 0.75.

Examples

Leave almost only low frequencies in audio:

afftfilt="'real=re * (1-clip((b/nb)*b,0,1))':imag='im * (1-clip((b/nb)*b,0,1))'"

Apply robotize effect:

afftfilt="real='hypot(re,im)*sin(0)':imag='hypot(re,im)*cos(0)':win_size=512:overlap=0.75"

Apply whisper effect:

afftfilt="real='hypot(re,im)*cos((random(0)*2-1)*2*3.14)':imag='hypot(re,im)*sin((random(1)*2-1)*2*3.14)':win_size=128:overlap=0.8"

Apply phase shift:

afftfilt="real=re*cos(1)-im*sin(1):imag=re*sin(1)+im*cos(1)"

afir
Apply an arbitrary Finite Impulse Response filter.

This filter is designed for applying long FIR filters, up to 60 seconds long.

It can be used as component for digital crossover filters, room equalization, cross talk cancellation, wavefield synthesis, auralization, ambiophonics, ambisonics and spatialization.

This filter uses the streams higher than first one as FIR coefficients. If the non-first stream holds a single channel, it will be used for all input channels in the first stream, otherwise the number of channels in the non-first stream must be same as the number of channels in the first stream.

It accepts the following parameters:

dry

Set dry gain. This sets input gain.

wet

Set wet gain. This sets final output gain.

length

Set Impulse Response filter length. Default is 1, which means whole IR is processed.

gtype

Enable applying gain measured from power of IR.

Set which approach to use for auto gain measurement.
none

Do not apply any gain.

peak

select peak gain, very conservative approach. This is default value.

dc

select DC gain, limited application.

gn

select gain to noise approach, this is most popular one.

ac

select AC gain.

rms

select RMS gain.

irgain

Set gain to be applied to IR coefficients before filtering. Allowed range is 0 to 1. This gain is applied after any gain applied with gtype option.

irfmt

Set format of IR stream. Can be "mono" or "input". Default is "input".

maxir

Set max allowed Impulse Response filter duration in seconds. Default is 30 seconds. Allowed range is 0.1 to 60 seconds.

response

Show IR frequency response, magnitude(magenta), phase(green) and group delay(yellow) in additional video stream. By default it is disabled.

channel

Set for which IR channel to display frequency response. By default is first channel displayed. This option is used only when response is enabled.

size

Set video stream size. This option is used only when response is enabled.

rate

Set video stream frame rate. This option is used only when response is enabled.

minp

Set minimal partition size used for convolution. Default is 8192. Allowed range is from 1 to 65536. Lower values decreases latency at cost of higher CPU usage.

maxp

Set maximal partition size used for convolution. Default is 8192. Allowed range is from 8 to 65536. Lower values may increase CPU usage.

nbirs

Set number of input impulse responses streams which will be switchable at runtime. Allowed range is from 1 to 32. Default is 1.

ir

Set IR stream which will be used for convolution, starting from 0, should always be lower than supplied value by "nbirs" option. Default is 0. This option can be changed at runtime via commands.

precision

Set which precision to use when processing samples.
auto

Auto pick internal sample format depending on other filters.

float

Always use single-floating point precision sample format.

double

Always use double-floating point precision sample format.

Default value is auto.

irload

Set when to load IR stream. Can be "init" or "access". First one load and prepares all IRs on initialization, second one once on first access of specific IR. Default is "init".

Examples

Apply reverb to stream using mono IR file as second input, complete command using ffmpeg:

ffmpeg -i input.wav -i middle_tunnel_1way_mono.wav -lavfi afir output.wav

Apply true stereo processing given input stereo stream, and two stereo impulse responses for left and right channel, the impulse response files are files with names l_ir.wav and r_ir.wav:

"pan=4C|c0=FL|c1=FL|c2=FR|c3=FR[a];amovie=l_ir.wav[LIR];amovie=r_ir.wav[RIR];[LIR][RIR]amerge[ir];[a][ir]afir=irfmt=input:gtype=gn:irgain=-5dB,pan=stereo|FL<c0+c2|FR<c1+c3"

aformat
Set output format constraints for the input audio. The framework will negotiate the most appropriate format to minimize conversions.

It accepts the following parameters:
sample_fmts, f

A ’|’-separated list of requested sample formats.

sample_rates, r

A ’|’-separated list of requested sample rates.

channel_layouts, cl

A ’|’-separated list of requested channel layouts.

See the Channel Layout section in the ffmpeg-utils(1) manual for the required syntax.

If a parameter is omitted, all values are allowed.

Force the output to either unsigned 8-bit or signed 16-bit stereo

aformat=sample_fmts=u8|s16:channel_layouts=stereo

afreqshift
Apply frequency shift to input audio samples.

The filter accepts the following options:
shift

Specify frequency shift. Allowed range is -INT_MAX to INT_MAX. Default value is 0.0.

level

Set output gain applied to final output. Allowed range is from 0.0 to 1.0. Default value is 1.0.

order

Set filter order used for filtering. Allowed range is from 1 to 16. Default value is 8.

Commands

This filter supports the all above options as commands.

afwtdn
Reduce broadband noise from input samples using Wavelets.

A description of the accepted options follows.
sigma

Set the noise sigma, allowed range is from 0 to 1. Default value is 0. This option controls strength of denoising applied to input samples. Most useful way to set this option is via decibels, eg. -45dB.

levels

Set the number of wavelet levels of decomposition. Allowed range is from 1 to 12. Default value is 10. Setting this too low make denoising performance very poor.

wavet

Set wavelet type for decomposition of input frame. They are sorted by number of coefficients, from lowest to highest. More coefficients means worse filtering speed, but overall better quality. Available wavelets are:
sym2
sym4
rbior68
deb10
sym10
coif5

bl3

percent

Set percent of full denoising. Allowed range is from 0 to 100 percent. Default value is 85 percent or partial denoising.

profile

If enabled, first input frame will be used as noise profile. If first frame samples contain non-noise performance will be very poor.

adaptive

If enabled, input frames are analyzed for presence of noise. If noise is detected with high possibility then input frame profile will be used for processing following frames, until new noise frame is detected.

samples

Set size of single frame in number of samples. Allowed range is from 512 to 65536. Default frame size is 8192 samples.

softness

Set softness applied inside thresholding function. Allowed range is from 0 to 10. Default softness is 1.

Commands

This filter supports the all above options as commands.

agate
A gate is mainly used to reduce lower parts of a signal. This kind of signal processing reduces disturbing noise between useful signals.

Gating is done by detecting the volume below a chosen level threshold and dividing it by the factor set with ratio. The bottom of the noise floor is set via range. Because an exact manipulation of the signal would cause distortion of the waveform the reduction can be levelled over time. This is done by setting attack and release.

attack determines how long the signal has to fall below the threshold before any reduction will occur and release sets the time the signal has to rise above the threshold to reduce the reduction again. Shorter signals than the chosen attack time will be left untouched.
level_in

Set input level before filtering. Default is 1. Allowed range is from 0.015625 to 64.

mode

Set the mode of operation. Can be "upward" or "downward". Default is "downward". If set to "upward" mode, higher parts of signal will be amplified, expanding dynamic range in upward direction. Otherwise, in case of "downward" lower parts of signal will be reduced.

range

Set the level of gain reduction when the signal is below the threshold. Default is 0.06125. Allowed range is from 0 to 1. Setting this to 0 disables reduction and then filter behaves like expander.

threshold

If a signal rises above this level the gain reduction is released. Default is 0.125. Allowed range is from 0 to 1.

ratio

Set a ratio by which the signal is reduced. Default is 2. Allowed range is from 1 to 9000.

attack

Amount of milliseconds the signal has to rise above the threshold before gain reduction stops. Default is 20 milliseconds. Allowed range is from 0.01 to 9000.

release

Amount of milliseconds the signal has to fall below the threshold before the reduction is increased again. Default is 250 milliseconds. Allowed range is from 0.01 to 9000.

makeup

Set amount of amplification of signal after processing. Default is 1. Allowed range is from 1 to 64.

knee

Curve the sharp knee around the threshold to enter gain reduction more softly. Default is 2.828427125. Allowed range is from 1 to 8.

detection

Choose if exact signal should be taken for detection or an RMS like one. Default is "rms". Can be "peak" or "rms".

link

Choose if the average level between all channels or the louder channel affects the reduction. Default is "average". Can be "average" or "maximum".

Commands

This filter supports the all above options as commands.

aiir
Apply an arbitrary Infinite Impulse Response filter.

It accepts the following parameters:
zeros, z

Set B/numerator/zeros/reflection coefficients.

poles, p

Set A/denominator/poles/ladder coefficients.

gains, k

Set channels gains.

dry_gain

Set input gain.

wet_gain

Set output gain.

format, f

Set coefficients format.

ll

lattice-ladder function

sf

analog transfer function

tf

digital transfer function

zp

Z-plane zeros/poles, cartesian (default)

pr

Z-plane zeros/poles, polar radians

pd

Z-plane zeros/poles, polar degrees

sp

S-plane zeros/poles

process, r

Set type of processing.

d

direct processing

s

serial processing

p

parallel processing

precision, e

Set filtering precision.

dbl

double-precision floating-point (default)

flt

single-precision floating-point

i32

32-bit integers

i16

16-bit integers

normalize, n

Normalize filter coefficients, by default is enabled. Enabling it will normalize magnitude response at DC to 0dB.

mix

How much to use filtered signal in output. Default is 1. Range is between 0 and 1.

response

Show IR frequency response, magnitude(magenta), phase(green) and group delay(yellow) in additional video stream. By default it is disabled.

channel

Set for which IR channel to display frequency response. By default is first channel displayed. This option is used only when response is enabled.

size

Set video stream size. This option is used only when response is enabled.

Coefficients in "tf" and "sf" format are separated by spaces and are in ascending order.

Coefficients in "zp" format are separated by spaces and order of coefficients doesn’t matter. Coefficients in "zp" format are complex numbers with i imaginary unit.

Different coefficients and gains can be provided for every channel, in such case use ’|’ to separate coefficients or gains. Last provided coefficients will be used for all remaining channels.

Examples

Apply 2 pole elliptic notch at around 5000Hz for 48000 Hz sample rate:

aiir=k=1:z=7.957584807809675810E-1 -2.575128568908332300 3.674839853930788710 -2.57512875289799137 7.957586296317130880E-1:p=1 -2.86950072432325953 3.63022088054647218 -2.28075678147272232 6.361362326477423500E-1:f=tf:r=d

Same as above but in "zp" format:

aiir=k=0.79575848078096756:z=0.80918701+0.58773007i 0.80918701-0.58773007i 0.80884700+0.58784055i 0.80884700-0.58784055i:p=0.63892345+0.59951235i 0.63892345-0.59951235i 0.79582691+0.44198673i 0.79582691-0.44198673i:f=zp:r=s

Apply 3-rd order analog normalized Butterworth low-pass filter, using analog transfer function format:

aiir=z=1.3057 0 0 0:p=1.3057 2.3892 2.1860 1:f=sf:r=d

alimiter
The limiter prevents an input signal from rising over a desired threshold. This limiter uses lookahead technology to prevent your signal from distorting. It means that there is a small delay after the signal is processed. Keep in mind that the delay it produces is the attack time you set.

The filter accepts the following options:
level_in

Set input gain. Default is 1.

level_out

Set output gain. Default is 1.

limit

Don’t let signals above this level pass the limiter. Default is 1.

attack

The limiter will reach its attenuation level in this amount of time in milliseconds. Default is 5 milliseconds.

release

Come back from limiting to attenuation 1.0 in this amount of milliseconds. Default is 50 milliseconds.

asc

When gain reduction is always needed ASC takes care of releasing to an average reduction level rather than reaching a reduction of 0 in the release time.

asc_level

Select how much the release time is affected by ASC, 0 means nearly no changes in release time while 1 produces higher release times.

level

Auto level output signal. Default is enabled. This normalizes audio back to 0dB if enabled.

latency

Compensate the delay introduced by using the lookahead buffer set with attack parameter. Also flush the valid audio data in the lookahead buffer when the stream hits EOF.

Depending on picked setting it is recommended to upsample input 2x or 4x times with aresample before applying this filter.

allpass
Apply a two-pole all-pass filter with central frequency (in Hz) frequency, and filter-width width. An all-pass filter changes the audio’s frequency to phase relationship without changing its frequency to amplitude relationship.

The filter accepts the following options:
frequency, f

Set frequency in Hz.

width_type, t

Set method to specify band-width of filter.

h

Hz

q

Q-Factor

o

octave

s

slope

k

kHz

width, w

Specify the band-width of a filter in width_type units.

mix, m

How much to use filtered signal in output. Default is 1. Range is between 0 and 1.

channels, c

Specify which channels to filter, by default all available are filtered.

normalize, n

Normalize biquad coefficients, by default is disabled. Enabling it will normalize magnitude response at DC to 0dB.

order, o

Set the filter order, can be 1 or 2. Default is 2.

transform, a

Set transform type of IIR filter.

di

dii

tdi

tdii
latt

svf

zdf

precision, r

Set precison of filtering.
auto

Pick automatic sample format depending on surround filters.

s16

Always use signed 16-bit.

s32

Always use signed 32-bit.

f32

Always use float 32-bit.

f64

Always use float 64-bit.

Commands

This filter supports the following commands:
frequency, f

Change allpass frequency. Syntax for the command is : "frequency"

width_type, t

Change allpass width_type. Syntax for the command is : "width_type"

width, w

Change allpass width. Syntax for the command is : "width"

mix, m

Change allpass mix. Syntax for the command is : "mix"

aloop
Loop audio samples.

The filter accepts the following options:
loop

Set the number of loops. Setting this value to -1 will result in infinite loops. Default is 0.

size

Set maximal number of samples. Default is 0.

start

Set first sample of loop. Default is 0.

time

Set the time of loop start in seconds. Only used if option named start is set to -1.

amerge
Merge two or more audio streams into a single multi-channel stream.

The filter accepts the following options:
inputs

Set the number of inputs. Default is 2.

If the channel layouts of the inputs are disjoint, and therefore compatible, the channel layout of the output will be set accordingly and the channels will be reordered as necessary. If the channel layouts of the inputs are not disjoint, the output will have all the channels of the first input then all the channels of the second input, in that order, and the channel layout of the output will be the default value corresponding to the total number of channels.

For example, if the first input is in 2.1 (FL+FR+LF) and the second input is FC+BL+BR, then the output will be in 5.1, with the channels in the following order: a1, a2, b1, a3, b2, b3 (a1 is the first channel of the first input, b1 is the first channel of the second input).

On the other hand, if both input are in stereo, the output channels will be in the default order: a1, a2, b1, b2, and the channel layout will be arbitrarily set to 4.0, which may or may not be the expected value.

All inputs must have the same sample rate, and format.

If inputs do not have the same duration, the output will stop with the shortest.

Examples

Merge two mono files into a stereo stream:

amovie=left.wav [l] ; amovie=right.mp3 [r] ; [l] [r] amerge

Multiple merges assuming 1 video stream and 6 audio streams in input.mkv:

ffmpeg -i input.mkv -filter_complex "[0:1][0:2][0:3][0:4][0:5][0:6] amerge=inputs=6" -c:a pcm_s16le output.mkv

amix
Mixes multiple audio inputs into a single output.

Note that this filter only supports float samples (the amerge and pan audio filters support many formats). If the amix input has integer samples then aresample will be automatically inserted to perform the conversion to float samples.

It accepts the following parameters:
inputs

The number of inputs. If unspecified, it defaults to 2.

duration

How to determine the end-of-stream.
longest

The duration of the longest input. (default)

shortest

The duration of the shortest input.

first

The duration of the first input.

dropout_transition

The transition time, in seconds, for volume renormalization when an input stream ends. The default value is 2 seconds.

weights

Specify weight of each input audio stream as a sequence of numbers separated by a space. If fewer weights are specified compared to number of inputs, the last weight is assigned to the remaining inputs. Default weight for each input is 1.

normalize

Always scale inputs instead of only doing summation of samples. Beware of heavy clipping if inputs are not normalized prior or after filtering by this filter if this option is disabled. By default is enabled.

Examples

This will mix 3 input audio streams to a single output with the same duration as the first input and a dropout transition time of 3 seconds:

ffmpeg -i INPUT1 -i INPUT2 -i INPUT3 -filter_complex amix=inputs=3:duration=first:dropout_transition=3 OUTPUT

This will mix one vocal and one music input audio stream to a single output with the same duration as the longest input. The music will have quarter the weight as the vocals, and the inputs are not normalized:

ffmpeg -i VOCALS -i MUSIC -filter_complex amix=inputs=2:duration=longest:dropout_transition=0:weights="1 0.25":normalize=0 OUTPUT

Commands

This filter supports the following commands:
weights
normalize

Syntax is same as option with same name.

amultiply
Multiply first audio stream with second audio stream and store result in output audio stream. Multiplication is done by multiplying each sample from first stream with sample at same position from second stream.

With this element-wise multiplication one can create amplitude fades and amplitude modulations.

anequalizer
High-order parametric multiband equalizer for each channel.

It accepts the following parameters:
params

This option string is in format: "cchn f=cf w=w g=g t=f | ..." Each equalizer band is separated by ’|’.

chn

Set channel number to which equalization will be applied. If input doesn’t have that channel the entry is ignored.

f

Set central frequency for band. If input doesn’t have that frequency the entry is ignored.

w

Set band width in Hertz.

g

Set band gain in dB.

t

Set filter type for band, optional, can be:

0

Butterworth, this is default.

1

Chebyshev type 1.

2

Chebyshev type 2.

curves

With this option activated frequency response of anequalizer is displayed in video stream.

size

Set video stream size. Only useful if curves option is activated.

mgain

Set max gain that will be displayed. Only useful if curves option is activated. Setting this to a reasonable value makes it possible to display gain which is derived from neighbour bands which are too close to each other and thus produce higher gain when both are activated.

fscale

Set frequency scale used to draw frequency response in video output. Can be linear or logarithmic. Default is logarithmic.

colors

Set color for each channel curve which is going to be displayed in video stream. This is list of color names separated by space or by ’|’. Unrecognised or missing colors will be replaced by white color.

Examples

Lower gain by 10 of central frequency 200Hz and width 100 Hz for first 2 channels using Chebyshev type 1 filter:

anequalizer=c0 f=200 w=100 g=-10 t=1|c1 f=200 w=100 g=-10 t=1

Commands

This filter supports the following commands:
change

Alter existing filter parameters. Syntax for the commands is : "fN|f=freq|w=width|g=gain"

fN is existing filter number, starting from 0, if no such filter is available error is returned. freq set new frequency parameter. width set new width parameter in Hertz. gain set new gain parameter in dB.

Full filter invocation with asendcmd may look like this: asendcmd=c=’4.0 anequalizer change 0|f=200|w=50|g=1’,anequalizer=...

anlmdn
Reduce broadband noise in audio samples using Non-Local Means algorithm.

Each sample is adjusted by looking for other samples with similar contexts. This context similarity is defined by comparing their surrounding patches of size p. Patches are searched in an area of r around the sample.

The filter accepts the following options:
strength, s

Set denoising strength. Allowed range is from 0.00001 to 10000. Default value is 0.00001.

patch, p

Set patch radius duration. Allowed range is from 1 to 100 milliseconds. Default value is 2 milliseconds.

research, r

Set research radius duration. Allowed range is from 2 to 300 milliseconds. Default value is 6 milliseconds.

output, o

Set the output mode.

It accepts the following values:

i

Pass input unchanged.

o

Pass noise filtered out.

n

Pass only noise.

Default value is o.

smooth, m

Set smooth factor. Default value is 11. Allowed range is from 1 to 1000.

Commands

This filter supports the all above options as commands.

anlmf, anlms
Apply Normalized Least-Mean-(Squares|Fourth) algorithm to the first audio stream using the second audio stream.

This adaptive filter is used to mimic a desired filter by finding the filter coefficients that relate to producing the least mean square of the error signal (difference between the desired, 2nd input audio stream and the actual signal, the 1st input audio stream).

A description of the accepted options follows.
order

Set filter order.

mu

Set filter mu.

eps

Set the filter eps.

leakage

Set the filter leakage.

out_mode

It accepts the following values:

i

Pass the 1st input.

d

Pass the 2nd input.

o

Pass difference between desired, 2nd input and error signal estimate.

n

Pass difference between input, 1st input and error signal estimate.

e

Pass error signal estimated samples.

Default value is o.

Examples

One of many usages of this filter is noise reduction, input audio is filtered with same samples that are delayed by fixed amount, one such example for stereo audio is:

asplit[a][b],[a]adelay=32S|32S[a],[b][a]anlms=order=128:leakage=0.0005:mu=.5:out_mode=o

Commands

This filter supports the same commands as options, excluding option "order".

anull
Pass the audio source unchanged to the output.

apad
Pad the end of an audio stream with silence.

This can be used together with ffmpeg -shortest to extend audio streams to the same length as the video stream.

A description of the accepted options follows.
packet_size

Set silence packet size. Default value is 4096.

pad_len

Set the number of samples of silence to add to the end. After the value is reached, the stream is terminated. This option is mutually exclusive with whole_len.

whole_len

Set the minimum total number of samples in the output audio stream. If the value is longer than the input audio length, silence is added to the end, until the value is reached. This option is mutually exclusive with pad_len.

pad_dur

Specify the duration of samples of silence to add. See the Time duration section in the ffmpeg-utils(1) manual for the accepted syntax. Used only if set to non-negative value.

whole_dur

Specify the minimum total duration in the output audio stream. See the Time duration section in the ffmpeg-utils(1) manual for the accepted syntax. Used only if set to non-negative value. If the value is longer than the input audio length, silence is added to the end, until the value is reached. This option is mutually exclusive with pad_dur

If neither the pad_len nor the whole_len nor pad_dur nor whole_dur option is set, the filter will add silence to the end of the input stream indefinitely.

Note that for ffmpeg 4.4 and earlier a zero pad_dur or whole_dur also caused the filter to add silence indefinitely.

Examples

Add 1024 samples of silence to the end of the input:

apad=pad_len=1024

Make sure the audio output will contain at least 10000 samples, pad the input with silence if required:

apad=whole_len=10000

Use ffmpeg to pad the audio input with silence, so that the video stream will always result the shortest and will be converted until the end in the output file when using the shortest option:

ffmpeg -i VIDEO -i AUDIO -filter_complex "[1:0]apad" -shortest OUTPUT

aphaser
Add a phasing effect to the input audio.

A phaser filter creates series of peaks and troughs in the frequency spectrum. The position of the peaks and troughs are modulated so that they vary over time, creating a sweeping effect.

A description of the accepted parameters follows.
in_gain

Set input gain. Default is 0.4.

out_gain

Set output gain. Default is 0.74

delay

Set delay in milliseconds. Default is 3.0.

decay

Set decay. Default is 0.4.

speed

Set modulation speed in Hz. Default is 0.5.

type

Set modulation type. Default is triangular.

It accepts the following values:
triangular, t
sinusoidal, s

aphaseshift
Apply phase shift to input audio samples.

The filter accepts the following options:
shift

Specify phase shift. Allowed range is from -1.0 to 1.0. Default value is 0.0.

level

Set output gain applied to final output. Allowed range is from 0.0 to 1.0. Default value is 1.0.

order

Set filter order used for filtering. Allowed range is from 1 to 16. Default value is 8.

Commands

This filter supports the all above options as commands.

apsnr
Measure Audio Peak Signal-to-Noise Ratio.

This filter takes two audio streams for input, and outputs first audio stream. Results are in dB per channel at end of either input.

apsyclip
Apply Psychoacoustic clipper to input audio stream.

The filter accepts the following options:
level_in

Set input gain. By default it is 1. Range is [0.015625 - 64].

level_out

Set output gain. By default it is 1. Range is [0.015625 - 64].

clip

Set the clipping start value. Default value is 0dBFS or 1.

diff

Output only difference samples, useful to hear introduced distortions. By default is disabled.

adaptive

Set strength of adaptive distortion applied. Default value is 0.5. Allowed range is from 0 to 1.

iterations

Set number of iterations of psychoacoustic clipper. Allowed range is from 1 to 20. Default value is 10.

level

Auto level output signal. Default is disabled. This normalizes audio back to 0dBFS if enabled.

Commands

This filter supports the all above options as commands.

apulsator
Audio pulsator is something between an autopanner and a tremolo. But it can produce funny stereo effects as well. Pulsator changes the volume of the left and right channel based on a LFO (low frequency oscillator) with different waveforms and shifted phases. This filter have the ability to define an offset between left and right channel. An offset of 0 means that both LFO shapes match each other. The left and right channel are altered equally - a conventional tremolo. An offset of 50% means that the shape of the right channel is exactly shifted in phase (or moved backwards about half of the frequency) - pulsator acts as an autopanner. At 1 both curves match again. Every setting in between moves the phase shift gapless between all stages and produces some "bypassing" sounds with sine and triangle waveforms. The more you set the offset near 1 (starting from the 0.5) the faster the signal passes from the left to the right speaker.

The filter accepts the following options:
level_in

Set input gain. By default it is 1. Range is [0.015625 - 64].

level_out

Set output gain. By default it is 1. Range is [0.015625 - 64].

mode

Set waveform shape the LFO will use. Can be one of: sine, triangle, square, sawup or sawdown. Default is sine.

amount

Set modulation. Define how much of original signal is affected by the LFO.

offset_l

Set left channel offset. Default is 0. Allowed range is [0 - 1].

offset_r

Set right channel offset. Default is 0.5. Allowed range is [0 - 1].

width

Set pulse width. Default is 1. Allowed range is [0 - 2].

timing

Set possible timing mode. Can be one of: bpm, ms or hz. Default is hz.

bpm

Set bpm. Default is 120. Allowed range is [30 - 300]. Only used if timing is set to bpm.

ms

Set ms. Default is 500. Allowed range is [10 - 2000]. Only used if timing is set to ms.

hz

Set frequency in Hz. Default is 2. Allowed range is [0.01 - 100]. Only used if timing is set to hz.

aresample
Resample the input audio to the specified parameters, using the libswresample library. If none are specified then the filter will automatically convert between its input and output.

This filter is also able to stretch/squeeze the audio data to make it match the timestamps or to inject silence / cut out audio to make it match the timestamps, do a combination of both or do neither.

The filter accepts the syntax [sample_rate:]resampler_options, where sample_rate expresses a sample rate and resampler_options is a list of key=value pairs, separated by ":". See the "Resampler Options" section in the ffmpeg-resampler(1) manual for the complete list of supported options.

Examples

Resample the input audio to 44100Hz:

aresample=44100

Stretch/squeeze samples to the given timestamps, with a maximum of 1000 samples per second compensation:

aresample=async=1000

areverse
Reverse an audio clip.

Warning: This filter requires memory to buffer the entire clip, so trimming is suggested.

Examples

Take the first 5 seconds of a clip, and reverse it.

atrim=end=5,areverse

arls
Apply Recursive Least Squares algorithm to the first audio stream using the second audio stream.

This adaptive filter is used to mimic a desired filter by recursively finding the filter coefficients that relate to producing the minimal weighted linear least squares cost function of the error signal (difference between the desired, 2nd input audio stream and the actual signal, the 1st input audio stream).

A description of the accepted options follows.
order

Set the filter order.

lambda

Set the forgetting factor.

delta

Set the coefficient to initialize internal covariance matrix.

out_mode

Set the filter output samples. It accepts the following values:

i

Pass the 1st input.

d

Pass the 2nd input.

o

Pass difference between desired, 2nd input and error signal estimate.

n

Pass difference between input, 1st input and error signal estimate.

e

Pass error signal estimated samples.

Default value is o.

arnndn
Reduce noise from speech using Recurrent Neural Networks.

This filter accepts the following options:
model, m

Set train model file to load. This option is always required.

mix

Set how much to mix filtered samples into final output. Allowed range is from -1 to 1. Default value is 1. Negative values are special, they set how much to keep filtered noise in the final filter output. Set this option to -1 to hear actual noise removed from input signal.

Commands

This filter supports the all above options as commands.

asdr
Measure Audio Signal-to-Distortion Ratio.

This filter takes two audio streams for input, and outputs first audio stream. Results are in dB per channel at end of either input.

asetnsamples
Set the number of samples per each output audio frame.

The last output packet may contain a different number of samples, as the filter will flush all the remaining samples when the input audio signals its end.

The filter accepts the following options:
nb_out_samples, n

Set the number of frames per each output audio frame. The number is intended as the number of samples per each channel. Default value is 1024.

pad, p

If set to 1, the filter will pad the last audio frame with zeroes, so that the last frame will contain the same number of samples as the previous ones. Default value is 1.

For example, to set the number of per-frame samples to 1234 and disable padding for the last frame, use:

asetnsamples=n=1234:p=0

asetrate
Set the sample rate without altering the PCM data. This will result in a change of speed and pitch.

The filter accepts the following options:
sample_rate, r

Set the output sample rate. Default is 44100 Hz.

ashowinfo
Show a line containing various information for each input audio frame. The input audio is not modified.

The shown line contains a sequence of key/value pairs of the form key:value.

The following values are shown in the output:

n

The (sequential) number of the input frame, starting from 0.

pts

The presentation timestamp of the input frame, in time base units; the time base depends on the filter input pad, and is usually 1/sample_rate.

pts_time

The presentation timestamp of the input frame in seconds.

fmt

The sample format.

chlayout

The channel layout.

rate

The sample rate for the audio frame.

nb_samples

The number of samples (per channel) in the frame.

checksum

The Adler-32 checksum (printed in hexadecimal) of the audio data. For planar audio, the data is treated as if all the planes were concatenated.

plane_checksums

A list of Adler-32 checksums for each data plane.

asisdr
Measure Audio Scaled-Invariant Signal-to-Distortion Ratio.

This filter takes two audio streams for input, and outputs first audio stream. Results are in dB per channel at end of either input.

asoftclip
Apply audio soft clipping.

Soft clipping is a type of distortion effect where the amplitude of a signal is saturated along a smooth curve, rather than the abrupt shape of hard-clipping.

This filter accepts the following options:
type

Set type of soft-clipping.

It accepts the following values:
hard
tanh
atan
cubic

exp

alg

quintic

sin

erf

threshold

Set threshold from where to start clipping. Default value is 0dB or 1.

output

Set gain applied to output. Default value is 0dB or 1.

param

Set additional parameter which controls sigmoid function.

oversample

Set oversampling factor.

Commands

This filter supports the all above options as commands.

aspectralstats
Display frequency domain statistical information about the audio channels. Statistics are calculated and stored as metadata for each audio channel and for each audio frame.

It accepts the following option:
win_size

Set the window length in samples. Default value is 2048. Allowed range is from 32 to 65536.

win_func

Set window function.

It accepts the following values:
rect
bartlett
hann, hanning
hamming
blackman
welch
flattop
bharris
bnuttall
bhann
sine
nuttall
lanczos
gauss
tukey
dolph
cauchy
parzen
poisson
bohman
kaiser

Default is "hann".

overlap

Set window overlap. Allowed range is from 0 to 1. Default value is 0.5.

measure

Select the parameters which are measured. The metadata keys can be used as flags, default is all which measures everything. none disables all measurement.

A list of each metadata key follows:
mean
variance
centroid
spread
skewness
kurtosis
entropy
flatness
crest
flux
slope
decrease
rolloff

asr
Automatic Speech Recognition

This filter uses PocketSphinx for speech recognition. To enable compilation of this filter, you need to configure FFmpeg with "--enable-pocketsphinx".

It accepts the following options:
rate

Set sampling rate of input audio. Defaults is 16000. This need to match speech models, otherwise one will get poor results.

hmm

Set dictionary containing acoustic model files.

dict

Set pronunciation dictionary.

lm

Set language model file.

lmctl

Set language model set.

lmname

Set which language model to use.

logfn

Set output for log messages.

The filter exports recognized speech as the frame metadata "lavfi.asr.text".

astats
Display time domain statistical information about the audio channels. Statistics are calculated and displayed for each audio channel and, where applicable, an overall figure is also given.

It accepts the following option:
length

Short window length in seconds, used for peak and trough RMS measurement. Default is 0.05 (50 milliseconds). Allowed range is "[0 - 10]".

metadata

Set metadata injection. All the metadata keys are prefixed with "lavfi.astats.X", where "X" is channel number starting from 1 or string "Overall". Default is disabled.

Available keys for each channel are: Bit_depth Crest_factor DC_offset Dynamic_range Entropy Flat_factor Max_difference Max_level Mean_difference Min_difference Min_level Noise_floor Noise_floor_count Number_of_Infs Number_of_NaNs Number_of_denormals Peak_count Abs_Peak_count Peak_level RMS_difference RMS_peak RMS_trough Zero_crossings Zero_crossings_rate

and for "Overall": Bit_depth DC_offset Entropy Flat_factor Max_difference Max_level Mean_difference Min_difference Min_level Noise_floor Noise_floor_count Number_of_Infs Number_of_NaNs Number_of_denormals Number_of_samples Peak_count Abs_Peak_count Peak_level RMS_difference RMS_level RMS_peak RMS_trough

For example, a full key looks like "lavfi.astats.1.DC_offset" or "lavfi.astats.Overall.Peak_count".

Read below for the description of the keys.

reset

Set the number of frames over which cumulative stats are calculated before being reset. Default is disabled.

measure_perchannel

Select the parameters which are measured per channel. The metadata keys can be used as flags, default is all which measures everything. none disables all per channel measurement.

measure_overall

Select the parameters which are measured overall. The metadata keys can be used as flags, default is all which measures everything. none disables all overall measurement.

A description of the measure keys follow:
none

no measures

all

all measures

Bit_depth

overall bit depth of audio, i.e. number of bits used for each sample

Crest_factor

standard ratio of peak to RMS level (note: not in dB)

DC_offset

mean amplitude displacement from zero

Dynamic_range

measured dynamic range of audio in dB

Entropy

entropy measured across whole audio, entropy of value near 1.0 is typically measured for white noise

Flat_factor

flatness (i.e. consecutive samples with the same value) of the signal at its peak levels (i.e. either Min_level or Max_level)

Max_difference

maximal difference between two consecutive samples

Max_level

maximal sample level

Mean_difference

mean difference between two consecutive samples, i.e. the average of each difference between two consecutive samples

Min_difference

minimal difference between two consecutive samples

Min_level

minimal sample level

Noise_floor

minimum local peak measured in dBFS over a short window

Noise_floor_count

number of occasions (not the number of samples) that the signal attained Noise floor

Number_of_Infs

number of samples with an infinite value

Number_of_NaNs

number of samples with a NaN (not a number) value

Number_of_denormals

number of samples with a subnormal value

Number_of_samples

number of samples

Peak_count

number of occasions (not the number of samples) that the signal attained either Min_level or Max_level

Abs_Peak_count

number of occasions that the absolute samples taken from the signal attained max absolute value of Min_level and Max_level

Peak_level

standard peak level measured in dBFS

RMS_difference

Root Mean Square difference between two consecutive samples

RMS_level

standard RMS level measured in dBFS

RMS_peak
RMS_trough

peak and trough values for RMS level measured over a short window, measured in dBFS.

Zero crossings

number of points where the waveform crosses the zero level axis

Zero crossings rate

rate of Zero crossings and number of audio samples

asubboost
Boost subwoofer frequencies.

The filter accepts the following options:

dry

Set dry gain, how much of original signal is kept. Allowed range is from 0 to 1. Default value is 1.0.

wet

Set wet gain, how much of filtered signal is kept. Allowed range is from 0 to 1. Default value is 1.0.

boost

Set max boost factor. Allowed range is from 1 to 12. Default value is 2.

decay

Set delay line decay gain value. Allowed range is from 0 to 1. Default value is 0.0.

feedback

Set delay line feedback gain value. Allowed range is from 0 to 1. Default value is 0.9.

cutoff

Set cutoff frequency in Hertz. Allowed range is 50 to 900. Default value is 100.

slope

Set slope amount for cutoff frequency. Allowed range is 0.0001 to 1. Default value is 0.5.

delay

Set delay. Allowed range is from 1 to 100. Default value is 20.

channels

Set the channels to process. Default value is all available.

Commands

This filter supports the all above options as commands.

asubcut
Cut subwoofer frequencies.

This filter allows to set custom, steeper roll off than highpass filter, and thus is able to more attenuate frequency content in stop-band.

The filter accepts the following options:
cutoff

Set cutoff frequency in Hertz. Allowed range is 2 to 200. Default value is 20.

order

Set filter order. Available values are from 3 to 20. Default value is 10.

level

Set input gain level. Allowed range is from 0 to 1. Default value is 1.

Commands

This filter supports the all above options as commands.

asupercut
Cut super frequencies.

The filter accepts the following options:
cutoff

Set cutoff frequency in Hertz. Allowed range is 20000 to 192000. Default value is 20000.

order

Set filter order. Available values are from 3 to 20. Default value is 10.

level

Set input gain level. Allowed range is from 0 to 1. Default value is 1.

Commands

This filter supports the all above options as commands.

asuperpass
Apply high order Butterworth band-pass filter.

The filter accepts the following options:
centerf

Set center frequency in Hertz. Allowed range is 2 to 999999. Default value is 1000.

order

Set filter order. Available values are from 4 to 20. Default value is 4.

qfactor

Set Q-factor. Allowed range is from 0.01 to 100. Default value is 1.

level

Set input gain level. Allowed range is from 0 to 2. Default value is 1.

Commands

This filter supports the all above options as commands.

asuperstop
Apply high order Butterworth band-stop filter.

The filter accepts the following options:
centerf

Set center frequency in Hertz. Allowed range is 2 to 999999. Default value is 1000.

order

Set filter order. Available values are from 4 to 20. Default value is 4.

qfactor

Set Q-factor. Allowed range is from 0.01 to 100. Default value is 1.

level

Set input gain level. Allowed range is from 0 to 2. Default value is 1.

Commands

This filter supports the all above options as commands.

atempo
Adjust audio tempo.

The filter accepts exactly one parameter, the audio tempo. If not specified then the filter will assume nominal 1.0 tempo. Tempo must be in the [0.5, 100.0] range.

Note that tempo greater than 2 will skip some samples rather than blend them in. If for any reason this is a concern it is always possible to daisy-chain several instances of atempo to achieve the desired product tempo.

Examples

Slow down audio to 80% tempo:

atempo=0.8

To speed up audio to 300% tempo:

atempo=3

To speed up audio to 300% tempo by daisy-chaining two atempo instances:

atempo=sqrt(3),atempo=sqrt(3)

Commands

This filter supports the following commands:
tempo

Change filter tempo scale factor. Syntax for the command is : "tempo"

atilt
Apply spectral tilt filter to audio stream.

This filter apply any spectral roll-off slope over any specified frequency band.

The filter accepts the following options:
freq

Set central frequency of tilt in Hz. Default is 10000 Hz.

slope

Set slope direction of tilt. Default is 0. Allowed range is from -1 to 1.

width

Set width of tilt. Default is 1000. Allowed range is from 100 to 10000.

order

Set order of tilt filter.

level

Set input volume level. Allowed range is from 0 to 4. Defalt is 1.

Commands

This filter supports the all above options as commands.

atrim
Trim the input so that the output contains one continuous subpart of the input.

It accepts the following parameters:
start

Timestamp (in seconds) of the start of the section to keep. I.e. the audio sample with the timestamp start will be the first sample in the output.

end

Specify time of the first audio sample that will be dropped, i.e. the audio sample immediately preceding the one with the timestamp end will be the last sample in the output.

start_pts

Same as start, except this option sets the start timestamp in samples instead of seconds.

end_pts

Same as end, except this option sets the end timestamp in samples instead of seconds.

duration

The maximum duration of the output in seconds.

start_sample

The number of the first sample that should be output.

end_sample

The number of the first sample that should be dropped.

start, end, and duration are expressed as time duration specifications; see the Time duration section in the ffmpeg-utils(1) manual.

Note that the first two sets of the start/end options and the duration option look at the frame timestamp, while the _sample options simply count the samples that pass through the filter. So start/end_pts and start/end_sample will give different results when the timestamps are wrong, inexact or do not start at zero. Also note that this filter does not modify the timestamps. If you wish to have the output timestamps start at zero, insert the asetpts filter after the atrim filter.

If multiple start or end options are set, this filter tries to be greedy and keep all samples that match at least one of the specified constraints. To keep only the part that matches all the constraints at once, chain multiple atrim filters.

The defaults are such that all the input is kept. So it is possible to set e.g. just the end values to keep everything before the specified time.

Examples:

Drop everything except the second minute of input:

ffmpeg -i INPUT -af atrim=60:120

Keep only the first 1000 samples:

ffmpeg -i INPUT -af atrim=end_sample=1000

axcorrelate
Calculate normalized windowed cross-correlation between two input audio streams.

Resulted samples are always between -1 and 1 inclusive. If result is 1 it means two input samples are highly correlated in that selected segment. Result 0 means they are not correlated at all. If result is -1 it means two input samples are out of phase, which means they cancel each other.

The filter accepts the following options:
size

Set size of segment over which cross-correlation is calculated. Default is 256. Allowed range is from 2 to 131072.

algo

Set algorithm for cross-correlation. Can be "slow" or "fast" or "best". Default is "best". Fast algorithm assumes mean values over any given segment are always zero and thus need much less calculations to make. This is generally not true, but is valid for typical audio streams.

Examples

Calculate correlation between channels in stereo audio stream:

ffmpeg -i stereo.wav -af channelsplit,axcorrelate=size=1024:algo=fast correlation.wav

bandpass
Apply a two-pole Butterworth band-pass filter with central frequency frequency, and (3dB-point) band-width width. The csg option selects a constant skirt gain (peak gain = Q) instead of the default: constant 0dB peak gain. The filter roll off at 6dB per octave (20dB per decade).

The filter accepts the following options:
frequency, f

Set the filter’s central frequency. Default is 3000.

csg

Constant skirt gain if set to 1. Defaults to 0.

width_type, t

Set method to specify band-width of filter.

h

Hz

q

Q-Factor

o

octave

s

slope

k

kHz

width, w

Specify the band-width of a filter in width_type units.

mix, m

How much to use filtered signal in output. Default is 1. Range is between 0 and 1.

channels, c

Specify which channels to filter, by default all available are filtered.

normalize, n

Normalize biquad coefficients, by default is disabled. Enabling it will normalize magnitude response at DC to 0dB.

transform, a

Set transform type of IIR filter.

di

dii

tdi

tdii
latt

svf

zdf

precision, r

Set precison of filtering.
auto

Pick automatic sample format depending on surround filters.

s16

Always use signed 16-bit.

s32

Always use signed 32-bit.

f32

Always use float 32-bit.

f64

Always use float 64-bit.

block_size, b

Set block size used for reverse IIR processing. If this value is set to high enough value (higher than impulse response length truncated when reaches near zero values) filtering will become linear phase otherwise if not big enough it will just produce nasty artifacts.

Note that filter delay will be exactly this many samples when set to non-zero value.

Commands

This filter supports the following commands:
frequency, f

Change bandpass frequency. Syntax for the command is : "frequency"

width_type, t

Change bandpass width_type. Syntax for the command is : "width_type"

width, w

Change bandpass width. Syntax for the command is : "width"

mix, m

Change bandpass mix. Syntax for the command is : "mix"

bandreject
Apply a two-pole Butterworth band-reject filter with central frequency frequency, and (3dB-point) band-width width. The filter roll off at 6dB per octave (20dB per decade).

The filter accepts the following options:
frequency, f

Set the filter’s central frequency. Default is 3000.

width_type, t

Set method to specify band-width of filter.

h

Hz

q

Q-Factor

o

octave

s

slope

k

kHz

width, w

Specify the band-width of a filter in width_type units.

mix, m

How much to use filtered signal in output. Default is 1. Range is between 0 and 1.

channels, c

Specify which channels to filter, by default all available are filtered.

normalize, n

Normalize biquad coefficients, by default is disabled. Enabling it will normalize magnitude response at DC to 0dB.

transform, a

Set transform type of IIR filter.

di

dii

tdi

tdii
latt

svf

zdf

precision, r

Set precison of filtering.
auto

Pick automatic sample format depending on surround filters.

s16

Always use signed 16-bit.

s32

Always use signed 32-bit.

f32

Always use float 32-bit.

f64

Always use float 64-bit.

block_size, b

Set block size used for reverse IIR processing. If this value is set to high enough value (higher than impulse response length truncated when reaches near zero values) filtering will become linear phase otherwise if not big enough it will just produce nasty artifacts.

Note that filter delay will be exactly this many samples when set to non-zero value.

Commands

This filter supports the following commands:
frequency, f

Change bandreject frequency. Syntax for the command is : "frequency"

width_type, t

Change bandreject width_type. Syntax for the command is : "width_type"

width, w

Change bandreject width. Syntax for the command is : "width"

mix, m

Change bandreject mix. Syntax for the command is : "mix"

bass, lowshelf
Boost or cut the bass (lower) frequencies of the audio using a two-pole shelving filter with a response similar to that of a standard hi-fi’s tone-controls. This is also known as shelving equalisation (EQ).

The filter accepts the following options:
gain, g

Give the gain at 0 Hz. Its useful range is about -20 (for a large cut) to +20 (for a large boost). Beware of clipping when using a positive gain.

frequency, f

Set the filter’s central frequency and so can be used to extend or reduce the frequency range to be boosted or cut. The default value is 100 Hz.

width_type, t

Set method to specify band-width of filter.

h

Hz

q

Q-Factor

o

octave

s

slope

k

kHz

width, w

Determine how steep is the filter’s shelf transition.

poles, p

Set number of poles. Default is 2.

mix, m

How much to use filtered signal in output. Default is 1. Range is between 0 and 1.

channels, c

Specify which channels to filter, by default all available are filtered.

normalize, n

Normalize biquad coefficients, by default is disabled. Enabling it will normalize magnitude response at DC to 0dB.

transform, a

Set transform type of IIR filter.

di

dii

tdi

tdii
latt

svf

zdf

precision, r

Set precison of filtering.
auto

Pick automatic sample format depending on surround filters.

s16

Always use signed 16-bit.

s32

Always use signed 32-bit.

f32

Always use float 32-bit.

f64

Always use float 64-bit.

block_size, b

Set block size used for reverse IIR processing. If this value is set to high enough value (higher than impulse response length truncated when reaches near zero values) filtering will become linear phase otherwise if not big enough it will just produce nasty artifacts.

Note that filter delay will be exactly this many samples when set to non-zero value.

Commands

This filter supports the following commands:
frequency, f

Change bass frequency. Syntax for the command is : "frequency"

width_type, t

Change bass width_type. Syntax for the command is : "width_type"

width, w

Change bass width. Syntax for the command is : "width"

gain, g

Change bass gain. Syntax for the command is : "gain"

mix, m

Change bass mix. Syntax for the command is : "mix"

biquad
Apply a biquad IIR filter with the given coefficients. Where b0, b1, b2 and a0, a1, a2 are the numerator and denominator coefficients respectively. and channels, c specify which channels to filter, by default all available are filtered.

Commands

This filter supports the following commands:

a0

a1

a2

b0

b1

b2

Change biquad parameter. Syntax for the command is : "value"

mix, m

How much to use filtered signal in output. Default is 1. Range is between 0 and 1.

channels, c

Specify which channels to filter, by default all available are filtered.

normalize, n

Normalize biquad coefficients, by default is disabled. Enabling it will normalize magnitude response at DC to 0dB.

transform, a

Set transform type of IIR filter.

di

dii

tdi

tdii
latt

svf

zdf

precision, r

Set precison of filtering.
auto

Pick automatic sample format depending on surround filters.

s16

Always use signed 16-bit.

s32

Always use signed 32-bit.

f32

Always use float 32-bit.

f64

Always use float 64-bit.

block_size, b

Set block size used for reverse IIR processing. If this value is set to high enough value (higher than impulse response length truncated when reaches near zero values) filtering will become linear phase otherwise if not big enough it will just produce nasty artifacts.

Note that filter delay will be exactly this many samples when set to non-zero value.

bs2b
Bauer stereo to binaural transformation, which improves headphone listening of stereo audio records.

To enable compilation of this filter you need to configure FFmpeg with "--enable-libbs2b".

It accepts the following parameters:
profile

Pre-defined crossfeed level.
default

Default level (fcut=700, feed=50).

cmoy

Chu Moy circuit (fcut=700, feed=60).

jmeier

Jan Meier circuit (fcut=650, feed=95).

fcut

Cut frequency (in Hz).

feed

Feed level (in Hz).

channelmap
Remap input channels to new locations.

It accepts the following parameters:

map

Map channels from input to output. The argument is a ’|’-separated list of mappings, each in the "in_channel-out_channel" or in_channel form. in_channel can be either the name of the input channel (e.g. FL for front left) or its index in the input channel layout. out_channel is the name of the output channel or its index in the output channel layout. If out_channel is not given then it is implicitly an index, starting with zero and increasing by one for each mapping.

channel_layout

The channel layout of the output stream.

If no mapping is present, the filter will implicitly map input channels to output channels, preserving indices.

Examples

For example, assuming a 5.1+downmix input MOV file,

ffmpeg -i in.mov -filter 'channelmap=map=DL-FL|DR-FR' out.wav

will create an output WAV file tagged as stereo from the downmix channels of the input.

To fix a 5.1 WAV improperly encoded in AAC’s native channel order

ffmpeg -i in.wav -filter 'channelmap=1|2|0|5|3|4:5.1' out.wav

channelsplit
Split each channel from an input audio stream into a separate output stream.

It accepts the following parameters:
channel_layout

The channel layout of the input stream. The default is "stereo".

channels

A channel layout describing the channels to be extracted as separate output streams or "all" to extract each input channel as a separate stream. The default is "all".

Choosing channels not present in channel layout in the input will result in an error.

Examples

For example, assuming a stereo input MP3 file,

ffmpeg -i in.mp3 -filter_complex channelsplit out.mkv

will create an output Matroska file with two audio streams, one containing only the left channel and the other the right channel.

Split a 5.1 WAV file into per-channel files:

ffmpeg -i in.wav -filter_complex
'channelsplit=channel_layout=5.1[FL][FR][FC][LFE][SL][SR]'
-map '[FL]' front_left.wav -map '[FR]' front_right.wav -map '[FC]'
front_center.wav -map '[LFE]' lfe.wav -map '[SL]' side_left.wav -map '[SR]'
side_right.wav

Extract only LFE from a 5.1 WAV file:

ffmpeg -i in.wav -filter_complex 'channelsplit=channel_layout=5.1:channels=LFE[LFE]'
-map '[LFE]' lfe.wav

chorus
Add a chorus effect to the audio.

Can make a single vocal sound like a chorus, but can also be applied to instrumentation.

Chorus resembles an echo effect with a short delay, but whereas with echo the delay is constant, with chorus, it is varied using using sinusoidal or triangular modulation. The modulation depth defines the range the modulated delay is played before or after the delay. Hence the delayed sound will sound slower or faster, that is the delayed sound tuned around the original one, like in a chorus where some vocals are slightly off key.

It accepts the following parameters:
in_gain

Set input gain. Default is 0.4.

out_gain

Set output gain. Default is 0.4.

delays

Set delays. A typical delay is around 40ms to 60ms.

decays

Set decays.

speeds

Set speeds.

depths

Set depths.

Examples

A single delay:

chorus=0.7:0.9:55:0.4:0.25:2

Two delays:

chorus=0.6:0.9:50|60:0.4|0.32:0.25|0.4:2|1.3

Fuller sounding chorus with three delays:

chorus=0.5:0.9:50|60|40:0.4|0.32|0.3:0.25|0.4|0.3:2|2.3|1.3

compand
Compress or expand the audio’s dynamic range.

It accepts the following parameters:
attacks
decays

A list of times in seconds for each channel over which the instantaneous level of the input signal is averaged to determine its volume. attacks refers to increase of volume and decays refers to decrease of volume. For most situations, the attack time (response to the audio getting louder) should be shorter than the decay time, because the human ear is more sensitive to sudden loud audio than sudden soft audio. A typical value for attack is 0.3 seconds and a typical value for decay is 0.8 seconds. If specified number of attacks & decays is lower than number of channels, the last set attack/decay will be used for all remaining channels.

points

A list of points for the transfer function, specified in dB relative to the maximum possible signal amplitude. Each key points list must be defined using the following syntax: "x0/y0|x1/y1|x2/y2|...." or "x0/y0 x1/y1 x2/y2 ...."

The input values must be in strictly increasing order but the transfer function does not have to be monotonically rising. The point "0/0" is assumed but may be overridden (by "0/out-dBn"). Typical values for the transfer function are "-70/-70|-60/-20|1/0".

soft-knee

Set the curve radius in dB for all joints. It defaults to 0.01.

gain

Set the additional gain in dB to be applied at all points on the transfer function. This allows for easy adjustment of the overall gain. It defaults to 0.

volume

Set an initial volume, in dB, to be assumed for each channel when filtering starts. This permits the user to supply a nominal level initially, so that, for example, a very large gain is not applied to initial signal levels before the companding has begun to operate. A typical value for audio which is initially quiet is -90 dB. It defaults to 0.

delay

Set a delay, in seconds. The input audio is analyzed immediately, but audio is delayed before being fed to the volume adjuster. Specifying a delay approximately equal to the attack/decay times allows the filter to effectively operate in predictive rather than reactive mode. It defaults to 0.

Examples

Make music with both quiet and loud passages suitable for listening to in a noisy environment:

compand=.3|.3:1|1:-90/-60|-60/-40|-40/-30|-20/-20:6:0:-90:0.2

Another example for audio with whisper and explosion parts:

compand=0|0:1|1:-90/-900|-70/-70|-30/-9|0/-3:6:0:0:0

A noise gate for when the noise is at a lower level than the signal:

compand=.1|.1:.2|.2:-900/-900|-50.1/-900|-50/-50:.01:0:-90:.1

Here is another noise gate, this time for when the noise is at a higher level than the signal (making it, in some ways, similar to squelch):

compand=.1|.1:.1|.1:-45.1/-45.1|-45/-900|0/-900:.01:45:-90:.1

2:1 compression starting at -6dB:

compand=points=-80/-80|-6/-6|0/-3.8|20/3.5

2:1 compression starting at -9dB:

compand=points=-80/-80|-9/-9|0/-5.3|20/2.9

2:1 compression starting at -12dB:

compand=points=-80/-80|-12/-12|0/-6.8|20/1.9

2:1 compression starting at -18dB:

compand=points=-80/-80|-18/-18|0/-9.8|20/0.7

3:1 compression starting at -15dB:

compand=points=-80/-80|-15/-15|0/-10.8|20/-5.2

Compressor/Gate:

compand=points=-80/-105|-62/-80|-15.4/-15.4|0/-12|20/-7.6

Expander:

compand=attacks=0:points=-80/-169|-54/-80|-49.5/-64.6|-41.1/-41.1|-25.8/-15|-10.8/-4.5|0/0|20/8.3

Hard limiter at -6dB:

compand=attacks=0:points=-80/-80|-6/-6|20/-6

Hard limiter at -12dB:

compand=attacks=0:points=-80/-80|-12/-12|20/-12

Hard noise gate at -35 dB:

compand=attacks=0:points=-80/-115|-35.1/-80|-35/-35|20/20

Soft limiter:

compand=attacks=0:points=-80/-80|-12.4/-12.4|-6/-8|0/-6.8|20/-2.8

compensationdelay
Compensation Delay Line is a metric based delay to compensate differing positions of microphones or speakers.

For example, you have recorded guitar with two microphones placed in different locations. Because the front of sound wave has fixed speed in normal conditions, the phasing of microphones can vary and depends on their location and interposition. The best sound mix can be achieved when these microphones are in phase (synchronized). Note that a distance of ~30 cm between microphones makes one microphone capture the signal in antiphase to the other microphone. That makes the final mix sound moody. This filter helps to solve phasing problems by adding different delays to each microphone track and make them synchronized.

The best result can be reached when you take one track as base and synchronize other tracks one by one with it. Remember that synchronization/delay tolerance depends on sample rate, too. Higher sample rates will give more tolerance.

The filter accepts the following parameters:

mm

Set millimeters distance. This is compensation distance for fine tuning. Default is 0.

cm

Set cm distance. This is compensation distance for tightening distance setup. Default is 0.

m

Set meters distance. This is compensation distance for hard distance setup. Default is 0.

dry

Set dry amount. Amount of unprocessed (dry) signal. Default is 0.

wet

Set wet amount. Amount of processed (wet) signal. Default is 1.

temp

Set temperature in degrees Celsius. This is the temperature of the environment. Default is 20.

Commands

This filter supports the all above options as commands.

crossfeed
Apply headphone crossfeed filter.

Crossfeed is the process of blending the left and right channels of stereo audio recording. It is mainly used to reduce extreme stereo separation of low frequencies.

The intent is to produce more speaker like sound to the listener.

The filter accepts the following options:
strength

Set strength of crossfeed. Default is 0.2. Allowed range is from 0 to 1. This sets gain of low shelf filter for side part of stereo image. Default is -6dB. Max allowed is -30db when strength is set to 1.

range

Set soundstage wideness. Default is 0.5. Allowed range is from 0 to 1. This sets cut off frequency of low shelf filter. Default is cut off near 1550 Hz. With range set to 1 cut off frequency is set to 2100 Hz.

slope

Set curve slope of low shelf filter. Default is 0.5. Allowed range is from 0.01 to 1.

level_in

Set input gain. Default is 0.9.

level_out

Set output gain. Default is 1.

block_size

Set block size used for reverse IIR processing. If this value is set to high enough value (higher than impulse response length truncated when reaches near zero values) filtering will become linear phase otherwise if not big enough it will just produce nasty artifacts.

Note that filter delay will be exactly this many samples when set to non-zero value.

Commands

This filter supports the all above options as commands.

crystalizer
Simple algorithm for audio noise sharpening.

This filter linearly increases differences betweeen each audio sample.

The filter accepts the following options:

i

Sets the intensity of effect (default: 2.0). Must be in range between -10.0 to 0 (unchanged sound) to 10.0 (maximum effect). To inverse filtering use negative value.

c

Enable clipping. By default is enabled.

Commands

This filter supports the all above options as commands.

dcshift
Apply a DC shift to the audio.

This can be useful to remove a DC offset (caused perhaps by a hardware problem in the recording chain) from the audio. The effect of a DC offset is reduced headroom and hence volume. The astats filter can be used to determine if a signal has a DC offset.
shift

Set the DC shift, allowed range is [-1, 1]. It indicates the amount to shift the audio.

limitergain

Optional. It should have a value much less than 1 (e.g. 0.05 or 0.02) and is used to prevent clipping.

deesser
Apply de-essing to the audio samples.

i

Set intensity for triggering de-essing. Allowed range is from 0 to 1. Default is 0.

m

Set amount of ducking on treble part of sound. Allowed range is from 0 to 1. Default is 0.5.

f

How much of original frequency content to keep when de-essing. Allowed range is from 0 to 1. Default is 0.5.

s

Set the output mode.

It accepts the following values:

i

Pass input unchanged.

o

Pass ess filtered out.

e

Pass only ess.

Default value is o.

dialoguenhance
Enhance dialogue in stereo audio.

This filter accepts stereo input and produce surround (3.0) channels output. The newly produced front center channel have enhanced speech dialogue originally available in both stereo channels. This filter outputs front left and front right channels same as available in stereo input.

The filter accepts the following options:
original

Set the original center factor to keep in front center channel output. Allowed range is from 0 to 1. Default value is 1.

enhance

Set the dialogue enhance factor to put in front center channel output. Allowed range is from 0 to 3. Default value is 1.

voice

Set the voice detection factor. Allowed range is from 2 to 32. Default value is 2.

Commands

This filter supports the all above options as commands.

drmeter
Measure audio dynamic range.

DR values of 14 and higher is found in very dynamic material. DR of 8 to 13 is found in transition material. And anything less that 8 have very poor dynamics and is very compressed.

The filter accepts the following options:
length

Set window length in seconds used to split audio into segments of equal length. Default is 3 seconds.

dynaudnorm
Dynamic Audio Normalizer.

This filter applies a certain amount of gain to the input audio in order to bring its peak magnitude to a target level (e.g. 0 dBFS). However, in contrast to more "simple" normalization algorithms, the Dynamic Audio Normalizer *dynamically* re-adjusts the gain factor to the input audio. This allows for applying extra gain to the "quiet" sections of the audio while avoiding distortions or clipping the "loud" sections. In other words: The Dynamic Audio Normalizer will "even out" the volume of quiet and loud sections, in the sense that the volume of each section is brought to the same target level. Note, however, that the Dynamic Audio Normalizer achieves this goal *without* applying "dynamic range compressing". It will retain 100% of the dynamic range *within* each section of the audio file.
framelen, f

Set the frame length in milliseconds. In range from 10 to 8000 milliseconds. Default is 500 milliseconds. The Dynamic Audio Normalizer processes the input audio in small chunks, referred to as frames. This is required, because a peak magnitude has no meaning for just a single sample value. Instead, we need to determine the peak magnitude for a contiguous sequence of sample values. While a "standard" normalizer would simply use the peak magnitude of the complete file, the Dynamic Audio Normalizer determines the peak magnitude individually for each frame. The length of a frame is specified in milliseconds. By default, the Dynamic Audio Normalizer uses a frame length of 500 milliseconds, which has been found to give good results with most files. Note that the exact frame length, in number of samples, will be determined automatically, based on the sampling rate of the individual input audio file.

gausssize, g

Set the Gaussian filter window size. In range from 3 to 301, must be odd number. Default is 31. Probably the most important parameter of the Dynamic Audio Normalizer is the "window size" of the Gaussian smoothing filter. The filter’s window size is specified in frames, centered around the current frame. For the sake of simplicity, this must be an odd number. Consequently, the default value of 31 takes into account the current frame, as well as the 15 preceding frames and the 15 subsequent frames. Using a larger window results in a stronger smoothing effect and thus in less gain variation, i.e. slower gain adaptation. Conversely, using a smaller window results in a weaker smoothing effect and thus in more gain variation, i.e. faster gain adaptation. In other words, the more you increase this value, the more the Dynamic Audio Normalizer will behave like a "traditional" normalization filter. On the contrary, the more you decrease this value, the more the Dynamic Audio Normalizer will behave like a dynamic range compressor.

peak, p

Set the target peak value. This specifies the highest permissible magnitude level for the normalized audio input. This filter will try to approach the target peak magnitude as closely as possible, but at the same time it also makes sure that the normalized signal will never exceed the peak magnitude. A frame’s maximum local gain factor is imposed directly by the target peak magnitude. The default value is 0.95 and thus leaves a headroom of 5%*. It is not recommended to go above this value.

maxgain, m

Set the maximum gain factor. In range from 1.0 to 100.0. Default is 10.0. The Dynamic Audio Normalizer determines the maximum possible (local) gain factor for each input frame, i.e. the maximum gain factor that does not result in clipping or distortion. The maximum gain factor is determined by the frame’s highest magnitude sample. However, the Dynamic Audio Normalizer additionally bounds the frame’s maximum gain factor by a predetermined (global) maximum gain factor. This is done in order to avoid excessive gain factors in "silent" or almost silent frames. By default, the maximum gain factor is 10.0, For most inputs the default value should be sufficient and it usually is not recommended to increase this value. Though, for input with an extremely low overall volume level, it may be necessary to allow even higher gain factors. Note, however, that the Dynamic Audio Normalizer does not simply apply a "hard" threshold (i.e. cut off values above the threshold). Instead, a "sigmoid" threshold function will be applied. This way, the gain factors will smoothly approach the threshold value, but never exceed that value.

targetrms, r

Set the target RMS. In range from 0.0 to 1.0. Default is 0.0 - disabled. By default, the Dynamic Audio Normalizer performs "peak" normalization. This means that the maximum local gain factor for each frame is defined (only) by the frame’s highest magnitude sample. This way, the samples can be amplified as much as possible without exceeding the maximum signal level, i.e. without clipping. Optionally, however, the Dynamic Audio Normalizer can also take into account the frame’s root mean square, abbreviated RMS. In electrical engineering, the RMS is commonly used to determine the power of a time-varying signal. It is therefore considered that the RMS is a better approximation of the "perceived loudness" than just looking at the signal’s peak magnitude. Consequently, by adjusting all frames to a constant RMS value, a uniform "perceived loudness" can be established. If a target RMS value has been specified, a frame’s local gain factor is defined as the factor that would result in exactly that RMS value. Note, however, that the maximum local gain factor is still restricted by the frame’s highest magnitude sample, in order to prevent clipping.

coupling, n

Enable channels coupling. By default is enabled. By default, the Dynamic Audio Normalizer will amplify all channels by the same amount. This means the same gain factor will be applied to all channels, i.e. the maximum possible gain factor is determined by the "loudest" channel. However, in some recordings, it may happen that the volume of the different channels is uneven, e.g. one channel may be "quieter" than the other one(s). In this case, this option can be used to disable the channel coupling. This way, the gain factor will be determined independently for each channel, depending only on the individual channel’s highest magnitude sample. This allows for harmonizing the volume of the different channels.

correctdc, c

Enable DC bias correction. By default is disabled. An audio signal (in the time domain) is a sequence of sample values. In the Dynamic Audio Normalizer these sample values are represented in the -1.0 to 1.0 range, regardless of the original input format. Normally, the audio signal, or "waveform", should be centered around the zero point. That means if we calculate the mean value of all samples in a file, or in a single frame, then the result should be 0.0 or at least very close to that value. If, however, there is a significant deviation of the mean value from 0.0, in either positive or negative direction, this is referred to as a DC bias or DC offset. Since a DC bias is clearly undesirable, the Dynamic Audio Normalizer provides optional DC bias correction. With DC bias correction enabled, the Dynamic Audio Normalizer will determine the mean value, or "DC correction" offset, of each input frame and subtract that value from all of the frame’s sample values which ensures those samples are centered around 0.0 again. Also, in order to avoid "gaps" at the frame boundaries, the DC correction offset values will be interpolated smoothly between neighbouring frames.

altboundary, b

Enable alternative boundary mode. By default is disabled. The Dynamic Audio Normalizer takes into account a certain neighbourhood around each frame. This includes the preceding frames as well as the subsequent frames. However, for the "boundary" frames, located at the very beginning and at the very end of the audio file, not all neighbouring frames are available. In particular, for the first few frames in the audio file, the preceding frames are not known. And, similarly, for the last few frames in the audio file, the subsequent frames are not known. Thus, the question arises which gain factors should be assumed for the missing frames in the "boundary" region. The Dynamic Audio Normalizer implements two modes to deal with this situation. The default boundary mode assumes a gain factor of exactly 1.0 for the missing frames, resulting in a smooth "fade in" and "fade out" at the beginning and at the end of the input, respectively.

compress, s

Set the compress factor. In range from 0.0 to 30.0. Default is 0.0. By default, the Dynamic Audio Normalizer does not apply "traditional" compression. This means that signal peaks will not be pruned and thus the full dynamic range will be retained within each local neighbourhood. However, in some cases it may be desirable to combine the Dynamic Audio Normalizer’s normalization algorithm with a more "traditional" compression. For this purpose, the Dynamic Audio Normalizer provides an optional compression (thresholding) function. If (and only if) the compression feature is enabled, all input frames will be processed by a soft knee thresholding function prior to the actual normalization process. Put simply, the thresholding function is going to prune all samples whose magnitude exceeds a certain threshold value. However, the Dynamic Audio Normalizer does not simply apply a fixed threshold value. Instead, the threshold value will be adjusted for each individual frame. In general, smaller parameters result in stronger compression, and vice versa. Values below 3.0 are not recommended, because audible distortion may appear.

threshold, t

Set the target threshold value. This specifies the lowest permissible magnitude level for the audio input which will be normalized. If input frame volume is above this value frame will be normalized. Otherwise frame may not be normalized at all. The default value is set to 0, which means all input frames will be normalized. This option is mostly useful if digital noise is not wanted to be amplified.

channels, h

Specify which channels to filter, by default all available channels are filtered.

overlap, o

Specify overlap for frames. If set to 0 (default) no frame overlapping is done. Using >0 and <1 values will make less conservative gain adjustments, like when framelen option is set to smaller value, if framelen option value is compensated for non-zero overlap then gain adjustments will be smoother across time compared to zero overlap case.

curve, v

Specify the peak mapping curve expression which is going to be used when calculating gain applied to frames. The max output frame gain will still be limited by other options mentioned previously for this filter.

The expression can contain the following constants:

ch

current channel number

sn

current sample number

nb_channels

number of channels

t

timestamp expressed in seconds

sr

sample rate

p

current frame peak value

Commands

This filter supports the all above options as commands.

earwax
Make audio easier to listen to on headphones.

This filter adds ’cues’ to 44.1kHz stereo (i.e. audio CD format) audio so that when listened to on headphones the stereo image is moved from inside your head (standard for headphones) to outside and in front of the listener (standard for speakers).

Ported from SoX.

equalizer
Apply a two-pole peaking equalisation (EQ) filter. With this filter, the signal-level at and around a selected frequency can be increased or decreased, whilst (unlike bandpass and bandreject filters) that at all other frequencies is unchanged.

In order to produce complex equalisation curves, this filter can be given several times, each with a different central frequency.

The filter accepts the following options:
frequency, f

Set the filter’s central frequency in Hz.

width_type, t

Set method to specify band-width of filter.

h

Hz

q

Q-Factor

o

octave

s

slope

k

kHz

width, w

Specify the band-width of a filter in width_type units.

gain, g

Set the required gain or attenuation in dB. Beware of clipping when using a positive gain.

mix, m

How much to use filtered signal in output. Default is 1. Range is between 0 and 1.

channels, c

Specify which channels to filter, by default all available are filtered.

normalize, n

Normalize biquad coefficients, by default is disabled. Enabling it will normalize magnitude response at DC to 0dB.

transform, a

Set transform type of IIR filter.

di

dii

tdi

tdii
latt

svf

zdf

precision, r

Set precison of filtering.
auto

Pick automatic sample format depending on surround filters.

s16

Always use signed 16-bit.

s32

Always use signed 32-bit.

f32

Always use float 32-bit.

f64

Always use float 64-bit.

block_size, b

Set block size used for reverse IIR processing. If this value is set to high enough value (higher than impulse response length truncated when reaches near zero values) filtering will become linear phase otherwise if not big enough it will just produce nasty artifacts.

Note that filter delay will be exactly this many samples when set to non-zero value.

Examples

Attenuate 10 dB at 1000 Hz, with a bandwidth of 200 Hz:

equalizer=f=1000:t=h:width=200:g=-10

Apply 2 dB gain at 1000 Hz with Q 1 and attenuate 5 dB at 100 Hz with Q 2:

equalizer=f=1000:t=q:w=1:g=2,equalizer=f=100:t=q:w=2:g=-5

Commands

This filter supports the following commands:
frequency, f

Change equalizer frequency. Syntax for the command is : "frequency"

width_type, t

Change equalizer width_type. Syntax for the command is : "width_type"

width, w

Change equalizer width. Syntax for the command is : "width"

gain, g

Change equalizer gain. Syntax for the command is : "gain"

mix, m

Change equalizer mix. Syntax for the command is : "mix"

extrastereo
Linearly increases the difference between left and right channels which adds some sort of "live" effect to playback.

The filter accepts the following options:

m

Sets the difference coefficient (default: 2.5). 0.0 means mono sound (average of both channels), with 1.0 sound will be unchanged, with -1.0 left and right channels will be swapped.

c

Enable clipping. By default is enabled.

Commands

This filter supports the all above options as commands.

firequalizer
Apply FIR Equalization using arbitrary frequency response.

The filter accepts the following option:
gain

Set gain curve equation (in dB). The expression can contain variables:

f

the evaluated frequency

sr

sample rate

ch

channel number, set to 0 when multichannels evaluation is disabled

chid

channel id, see libavutil/channel_layout.h, set to the first channel id when multichannels evaluation is disabled

chs

number of channels

chlayout

channel_layout, see libavutil/channel_layout.h

and functions:
gain_interpolate(f)

interpolate gain on frequency f based on gain_entry

cubic_interpolate(f)

same as gain_interpolate, but smoother

This option is also available as command. Default is gain_interpolate(f).

gain_entry

Set gain entry for gain_interpolate function. The expression can contain functions:
entry(f, g)

store gain entry at frequency f with value g

This option is also available as command.

delay

Set filter delay in seconds. Higher value means more accurate. Default is 0.01.

accuracy

Set filter accuracy in Hz. Lower value means more accurate. Default is 5.

wfunc

Set window function. Acceptable values are:
rectangular

rectangular window, useful when gain curve is already smooth

hann

hann window (default)

hamming

hamming window

blackman

blackman window

nuttall3

3-terms continuous 1st derivative nuttall window

mnuttall3

minimum 3-terms discontinuous nuttall window

nuttall

4-terms continuous 1st derivative nuttall window

bnuttall

minimum 4-terms discontinuous nuttall (blackman-nuttall) window

bharris

blackman-harris window

tukey

tukey window

fixed

If enabled, use fixed number of audio samples. This improves speed when filtering with large delay. Default is disabled.

multi

Enable multichannels evaluation on gain. Default is disabled.

zero_phase

Enable zero phase mode by subtracting timestamp to compensate delay. Default is disabled.

scale

Set scale used by gain. Acceptable values are:
linlin

linear frequency, linear gain

linlog

linear frequency, logarithmic (in dB) gain (default)

loglin

logarithmic (in octave scale where 20 Hz is 0) frequency, linear gain

loglog

logarithmic frequency, logarithmic gain

dumpfile

Set file for dumping, suitable for gnuplot.

dumpscale

Set scale for dumpfile. Acceptable values are same with scale option. Default is linlog.

fft2

Enable 2-channel convolution using complex FFT. This improves speed significantly. Default is disabled.

min_phase

Enable minimum phase impulse response. Default is disabled.

Examples

lowpass at 1000 Hz:

firequalizer=gain='if(lt(f,1000), 0, -INF)'

lowpass at 1000 Hz with gain_entry:

firequalizer=gain_entry='entry(1000,0); entry(1001, -INF)'

custom equalization:

firequalizer=gain_entry='entry(100,0); entry(400, -4); entry(1000, -6); entry(2000, 0)'

higher delay with zero phase to compensate delay:

firequalizer=delay=0.1:fixed=on:zero_phase=on

lowpass on left channel, highpass on right channel:

firequalizer=gain='if(eq(chid,1), gain_interpolate(f), if(eq(chid,2), gain_interpolate(1e6+f), 0))'
:gain_entry='entry(1000, 0); entry(1001,-INF); entry(1e6+1000,0)':multi=on

flanger
Apply a flanging effect to the audio.

The filter accepts the following options:
delay

Set base delay in milliseconds. Range from 0 to 30. Default value is 0.

depth

Set added sweep delay in milliseconds. Range from 0 to 10. Default value is 2.

regen

Set percentage regeneration (delayed signal feedback). Range from -95 to 95. Default value is 0.

width

Set percentage of delayed signal mixed with original. Range from 0 to 100. Default value is 71.

speed

Set sweeps per second (Hz). Range from 0.1 to 10. Default value is 0.5.

shape

Set swept wave shape, can be triangular or sinusoidal. Default value is sinusoidal.

phase

Set swept wave percentage-shift for multi channel. Range from 0 to 100. Default value is 25.

interp

Set delay-line interpolation, linear or quadratic. Default is linear.

haas
Apply Haas effect to audio.

Note that this makes most sense to apply on mono signals. With this filter applied to mono signals it give some directionality and stretches its stereo image.

The filter accepts the following options:
level_in

Set input level. By default is 1, or 0dB

level_out

Set output level. By default is 1, or 0dB.

side_gain

Set gain applied to side part of signal. By default is 1.

middle_source

Set kind of middle source. Can be one of the following:
left

Pick left channel.

right

Pick right channel.

mid

Pick middle part signal of stereo image.

side

Pick side part signal of stereo image.

middle_phase

Change middle phase. By default is disabled.

left_delay

Set left channel delay. By default is 2.05 milliseconds.

left_balance

Set left channel balance. By default is -1.

left_gain

Set left channel gain. By default is 1.

left_phase

Change left phase. By default is disabled.

right_delay

Set right channel delay. By defaults is 2.12 milliseconds.

right_balance

Set right channel balance. By default is 1.

right_gain

Set right channel gain. By default is 1.

right_phase

Change right phase. By default is enabled.

hdcd
Decodes High Definition Compatible Digital (HDCD) data. A 16-bit PCM stream with embedded HDCD codes is expanded into a 20-bit PCM stream.

The filter supports the Peak Extend and Low-level Gain Adjustment features of HDCD, and detects the Transient Filter flag.

ffmpeg -i HDCD16.flac -af hdcd OUT24.flac

When using the filter with wav, note the default encoding for wav is 16-bit, so the resulting 20-bit stream will be truncated back to 16-bit. Use something like -acodec pcm_s24le after the filter to get 24-bit PCM output.

ffmpeg -i HDCD16.wav -af hdcd OUT16.wav
ffmpeg -i HDCD16.wav -af hdcd -c:a pcm_s24le OUT24.wav

The filter accepts the following options:
disable_autoconvert

Disable any automatic format conversion or resampling in the filter graph.

process_stereo

Process the stereo channels together. If target_gain does not match between channels, consider it invalid and use the last valid target_gain.

cdt_ms

Set the code detect timer period in ms.

force_pe

Always extend peaks above -3dBFS even if PE isn’t signaled.

analyze_mode

Replace audio with a solid tone and adjust the amplitude to signal some specific aspect of the decoding process. The output file can be loaded in an audio editor alongside the original to aid analysis.

"analyze_mode=pe:force_pe=true" can be used to see all samples above the PE level.

Modes are:
0, off

Disabled

1, lle

Gain adjustment level at each sample

2, pe

Samples where peak extend occurs

3, cdt

Samples where the code detect timer is active

4, tgm

Samples where the target gain does not match between channels

headphone
Apply head-related transfer functions (HRTFs) to create virtual loudspeakers around the user for binaural listening via headphones. The HRIRs are provided via additional streams, for each channel one stereo input stream is needed.

The filter accepts the following options:

map

Set mapping of input streams for convolution. The argument is a ’|’-separated list of channel names in order as they are given as additional stream inputs for filter. This also specify number of input streams. Number of input streams must be not less than number of channels in first stream plus one.

gain

Set gain applied to audio. Value is in dB. Default is 0.

type

Set processing type. Can be time or freq. time is processing audio in time domain which is slow. freq is processing audio in frequency domain which is fast. Default is freq.

lfe

Set custom gain for LFE channels. Value is in dB. Default is 0.

size

Set size of frame in number of samples which will be processed at once. Default value is 1024. Allowed range is from 1024 to 96000.

hrir

Set format of hrir stream. Default value is stereo. Alternative value is multich. If value is set to stereo, number of additional streams should be greater or equal to number of input channels in first input stream. Also each additional stream should have stereo number of channels. If value is set to multich, number of additional streams should be exactly one. Also number of input channels of additional stream should be equal or greater than twice number of channels of first input stream.

Examples

Full example using wav files as coefficients with amovie filters for 7.1 downmix, each amovie filter use stereo file with IR coefficients as input. The files give coefficients for each position of virtual loudspeaker:

ffmpeg -i input.wav
-filter_complex "amovie=azi_270_ele_0_DFC.wav[sr];amovie=azi_90_ele_0_DFC.wav[sl];amovie=azi_225_ele_0_DFC.wav[br];amovie=azi_135_ele_0_DFC.wav[bl];amovie=azi_0_ele_0_DFC.wav,asplit[fc][lfe];amovie=azi_35_ele_0_DFC.wav[fl];amovie=azi_325_ele_0_DFC.wav[fr];[0:a][fl][fr][fc][lfe][bl][br][sl][sr]headphone=FL|FR|FC|LFE|BL|BR|SL|SR"
output.wav

Full example using wav files as coefficients with amovie filters for 7.1 downmix, but now in multich hrir format.

ffmpeg -i input.wav -filter_complex "amovie=minp.wav[hrirs];[0:a][hrirs]headphone=map=FL|FR|FC|LFE|BL|BR|SL|SR:hrir=multich"
output.wav

highpass
Apply a high-pass filter with 3dB point frequency. The filter can be either single-pole, or double-pole (the default). The filter roll off at 6dB per pole per octave (20dB per pole per decade).

The filter accepts the following options:
frequency, f

Set frequency in Hz. Default is 3000.

poles, p

Set number of poles. Default is 2.

width_type, t

Set method to specify band-width of filter.

h

Hz

q

Q-Factor

o

octave

s

slope

k

kHz

width, w

Specify the band-width of a filter in width_type units. Applies only to double-pole filter. The default is 0.707q and gives a Butterworth response.

mix, m

How much to use filtered signal in output. Default is 1. Range is between 0 and 1.

channels, c

Specify which channels to filter, by default all available are filtered.

normalize, n

Normalize biquad coefficients, by default is disabled. Enabling it will normalize magnitude response at DC to 0dB.

transform, a

Set transform type of IIR filter.

di

dii

tdi

tdii
latt

svf

zdf

precision, r

Set precison of filtering.
auto

Pick automatic sample format depending on surround filters.

s16

Always use signed 16-bit.

s32

Always use signed 32-bit.

f32

Always use float 32-bit.

f64

Always use float 64-bit.

block_size, b

Set block size used for reverse IIR processing. If this value is set to high enough value (higher than impulse response length truncated when reaches near zero values) filtering will become linear phase otherwise if not big enough it will just produce nasty artifacts.

Note that filter delay will be exactly this many samples when set to non-zero value.

Commands

This filter supports the following commands:
frequency, f

Change highpass frequency. Syntax for the command is : "frequency"

width_type, t

Change highpass width_type. Syntax for the command is : "width_type"

width, w

Change highpass width. Syntax for the command is : "width"

mix, m

Change highpass mix. Syntax for the command is : "mix"

join
Join multiple input streams into one multi-channel stream.

It accepts the following parameters:
inputs

The number of input streams. It defaults to 2.

channel_layout

The desired output channel layout. It defaults to stereo.

map

Map channels from inputs to output. The argument is a ’|’-separated list of mappings, each in the "input_idx.in_channel-out_channel" form. input_idx is the 0-based index of the input stream. in_channel can be either the name of the input channel (e.g. FL for front left) or its index in the specified input stream. out_channel is the name of the output channel.

The filter will attempt to guess the mappings when they are not specified explicitly. It does so by first trying to find an unused matching input channel and if that fails it picks the first unused input channel.

Join 3 inputs (with properly set channel layouts):

ffmpeg -i INPUT1 -i INPUT2 -i INPUT3 -filter_complex join=inputs=3 OUTPUT

Build a 5.1 output from 6 single-channel streams:

ffmpeg -i fl -i fr -i fc -i sl -i sr -i lfe -filter_complex
'join=inputs=6:channel_layout=5.1:map=0.0-FL|1.0-FR|2.0-FC|3.0-SL|4.0-SR|5.0-LFE'
out

ladspa
Load a LADSPA (Linux Audio Developer’s Simple Plugin API) plugin.

To enable compilation of this filter you need to configure FFmpeg with "--enable-ladspa".
file, f

Specifies the name of LADSPA plugin library to load. If the environment variable LADSPA_PATH is defined, the LADSPA plugin is searched in each one of the directories specified by the colon separated list in LADSPA_PATH, otherwise in the standard LADSPA paths, which are in this order: HOME/.ladspa/lib/, /usr/local/lib/ladspa/, /usr/lib/ladspa/.

plugin, p

Specifies the plugin within the library. Some libraries contain only one plugin, but others contain many of them. If this is not set filter will list all available plugins within the specified library.

controls, c

Set the ’|’ separated list of controls which are zero or more floating point values that determine the behavior of the loaded plugin (for example delay, threshold or gain). Controls need to be defined using the following syntax: c0=value0|c1=value1|c2=value2|..., where valuei is the value set on the i-th control. Alternatively they can be also defined using the following syntax: value0|value1|value2|..., where valuei is the value set on the i-th control. If controls is set to "help", all available controls and their valid ranges are printed.

sample_rate, s

Specify the sample rate, default to 44100. Only used if plugin have zero inputs.

nb_samples, n

Set the number of samples per channel per each output frame, default is 1024. Only used if plugin have zero inputs.

duration, d

Set the minimum duration of the sourced audio. See the Time duration section in the ffmpeg-utils(1) manual for the accepted syntax. Note that the resulting duration may be greater than the specified duration, as the generated audio is always cut at the end of a complete frame. If not specified, or the expressed duration is negative, the audio is supposed to be generated forever. Only used if plugin have zero inputs.

latency, l

Enable latency compensation, by default is disabled. Only used if plugin have inputs.

Examples

List all available plugins within amp (LADSPA example plugin) library:

ladspa=file=amp

List all available controls and their valid ranges for "vcf_notch" plugin from "VCF" library:

ladspa=f=vcf:p=vcf_notch:c=help

Simulate low quality audio equipment using "Computer Music Toolkit" (CMT) plugin library:

ladspa=file=cmt:plugin=lofi:controls=c0=22|c1=12|c2=12

Add reverberation to the audio using TAP-plugins (Tom’s Audio Processing plugins):

ladspa=file=tap_reverb:tap_reverb

Generate white noise, with 0.2 amplitude:

ladspa=file=cmt:noise_source_white:c=c0=.2

Generate 20 bpm clicks using plugin "C* Click - Metronome" from the "C* Audio Plugin Suite" (CAPS) library:

ladspa=file=caps:Click:c=c1=20'

Apply "C* Eq10X2 - Stereo 10-band equaliser" effect:

ladspa=caps:Eq10X2:c=c0=-48|c9=-24|c3=12|c4=2

Increase volume by 20dB using fast lookahead limiter from Steve Harris "SWH Plugins" collection:

ladspa=fast_lookahead_limiter_1913:fastLookaheadLimiter:20|0|2

Attenuate low frequencies using Multiband EQ from Steve Harris "SWH Plugins" collection:

ladspa=mbeq_1197:mbeq:-24|-24|-24|0|0|0|0|0|0|0|0|0|0|0|0

Reduce stereo image using "Narrower" from the "C* Audio Plugin Suite" (CAPS) library:

ladspa=caps:Narrower

Another white noise, now using "C* Audio Plugin Suite" (CAPS) library:

ladspa=caps:White:.2

Some fractal noise, using "C* Audio Plugin Suite" (CAPS) library:

ladspa=caps:Fractal:c=c1=1

Dynamic volume normalization using "VLevel" plugin:

ladspa=vlevel-ladspa:vlevel_mono

Commands

This filter supports the following commands:

cN

Modify the N-th control value.

If the specified value is not valid, it is ignored and prior one is kept.

loudnorm
EBU R128 loudness normalization. Includes both dynamic and linear normalization modes. Support for both single pass (livestreams, files) and double pass (files) modes. This algorithm can target IL, LRA, and maximum true peak. In dynamic mode, to accurately detect true peaks, the audio stream will be upsampled to 192 kHz. Use the "-ar" option or "aresample" filter to explicitly set an output sample rate.

The filter accepts the following options:
I, i

Set integrated loudness target. Range is -70.0 - -5.0. Default value is -24.0.

LRA, lra

Set loudness range target. Range is 1.0 - 50.0. Default value is 7.0.

TP, tp

Set maximum true peak. Range is -9.0 - +0.0. Default value is -2.0.

measured_I, measured_i

Measured IL of input file. Range is -99.0 - +0.0.

measured_LRA, measured_lra

Measured LRA of input file. Range is 0.0 - 99.0.

measured_TP, measured_tp

Measured true peak of input file. Range is -99.0 - +99.0.

measured_thresh

Measured threshold of input file. Range is -99.0 - +0.0.

offset

Set offset gain. Gain is applied before the true-peak limiter. Range is -99.0 - +99.0. Default is +0.0.

linear

Normalize by linearly scaling the source audio. "measured_I", "measured_LRA", "measured_TP", and "measured_thresh" must all be specified. Target LRA shouldn’t be lower than source LRA and the change in integrated loudness shouldn’t result in a true peak which exceeds the target TP. If any of these conditions aren’t met, normalization mode will revert to dynamic. Options are "true" or "false". Default is "true".

dual_mono

Treat mono input files as "dual-mono". If a mono file is intended for playback on a stereo system, its EBU R128 measurement will be perceptually incorrect. If set to "true", this option will compensate for this effect. Multi-channel input files are not affected by this option. Options are true or false. Default is false.

print_format

Set print format for stats. Options are summary, json, or none. Default value is none.

lowpass
Apply a low-pass filter with 3dB point frequency. The filter can be either single-pole or double-pole (the default). The filter roll off at 6dB per pole per octave (20dB per pole per decade).

The filter accepts the following options:
frequency, f

Set frequency in Hz. Default is 500.

poles, p

Set number of poles. Default is 2.

width_type, t

Set method to specify band-width of filter.

h

Hz

q

Q-Factor

o

octave

s

slope

k

kHz

width, w

Specify the band-width of a filter in width_type units. Applies only to double-pole filter. The default is 0.707q and gives a Butterworth response.

mix, m

How much to use filtered signal in output. Default is 1. Range is between 0 and 1.

channels, c

Specify which channels to filter, by default all available are filtered.

normalize, n

Normalize biquad coefficients, by default is disabled. Enabling it will normalize magnitude response at DC to 0dB.

transform, a

Set transform type of IIR filter.

di

dii

tdi

tdii
latt

svf

zdf

precision, r

Set precison of filtering.
auto

Pick automatic sample format depending on surround filters.

s16

Always use signed 16-bit.

s32

Always use signed 32-bit.

f32

Always use float 32-bit.

f64

Always use float 64-bit.

block_size, b

Set block size used for reverse IIR processing. If this value is set to high enough value (higher than impulse response length truncated when reaches near zero values) filtering will become linear phase otherwise if not big enough it will just produce nasty artifacts.

Note that filter delay will be exactly this many samples when set to non-zero value.

Examples

Lowpass only LFE channel, it LFE is not present it does nothing:

lowpass=c=LFE

Commands

This filter supports the following commands:
frequency, f

Change lowpass frequency. Syntax for the command is : "frequency"

width_type, t

Change lowpass width_type. Syntax for the command is : "width_type"

width, w

Change lowpass width. Syntax for the command is : "width"

mix, m

Change lowpass mix. Syntax for the command is : "mix"

lv2
Load a LV2 (LADSPA Version 2) plugin.

To enable compilation of this filter you need to configure FFmpeg with "--enable-lv2".
plugin, p

Specifies the plugin URI. You may need to escape ’:’.

controls, c

Set the ’|’ separated list of controls which are zero or more floating point values that determine the behavior of the loaded plugin (for example delay, threshold or gain). If controls is set to "help", all available controls and their valid ranges are printed.

sample_rate, s

Specify the sample rate, default to 44100. Only used if plugin have zero inputs.

nb_samples, n

Set the number of samples per channel per each output frame, default is 1024. Only used if plugin have zero inputs.

duration, d

Set the minimum duration of the sourced audio. See the Time duration section in the ffmpeg-utils(1) manual for the accepted syntax. Note that the resulting duration may be greater than the specified duration, as the generated audio is always cut at the end of a complete frame. If not specified, or the expressed duration is negative, the audio is supposed to be generated forever. Only used if plugin have zero inputs.

Examples

Apply bass enhancer plugin from Calf:

lv2=p=http\\\\://calf.sourceforge.net/plugins/BassEnhancer:c=amount=2

Apply vinyl plugin from Calf:

lv2=p=http\\\\://calf.sourceforge.net/plugins/Vinyl:c=drone=0.2|aging=0.5

Apply bit crusher plugin from ArtyFX:

lv2=p=http\\\\://www.openavproductions.com/artyfx#bitta:c=crush=0.3

Commands

This filter supports all options that are exported by plugin as commands.

mcompand
Multiband Compress or expand the audio’s dynamic range.

The input audio is divided into bands using 4th order Linkwitz-Riley IIRs. This is akin to the crossover of a loudspeaker, and results in flat frequency response when absent compander action.

It accepts the following parameters:
args

This option syntax is: attack,decay,[attack,decay..] soft-knee points crossover_frequency [delay [initial_volume [gain]]] | attack,decay ... For explanation of each item refer to compand filter documentation.

pan
Mix channels with specific gain levels. The filter accepts the output channel layout followed by a set of channels definitions.

This filter is also designed to efficiently remap the channels of an audio stream.

The filter accepts parameters of the form: "l|outdef|outdef|..."

l

output channel layout or number of channels

outdef

output channel specification, of the form: "out_name=[gain*]in_name[(+-)[gain*]in_name...]"

out_name

output channel to define, either a channel name (FL, FR, etc.) or a channel number (c0, c1, etc.)

gain

multiplicative coefficient for the channel, 1 leaving the volume unchanged

in_name

input channel to use, see out_name for details; it is not possible to mix named and numbered input channels

If the ’=’ in a channel specification is replaced by ’<’, then the gains for that specification will be renormalized so that the total is 1, thus avoiding clipping noise.

Mixing examples

For example, if you want to down-mix from stereo to mono, but with a bigger factor for the left channel:

pan=1c|c0=0.9*c0+0.1*c1

A customized down-mix to stereo that works automatically for 3-, 4-, 5- and 7-channels surround:

pan=stereo| FL < FL + 0.5*FC + 0.6*BL + 0.6*SL | FR < FR + 0.5*FC + 0.6*BR + 0.6*SR

Note that ffmpeg integrates a default down-mix (and up-mix) system that should be preferred (see "-ac" option) unless you have very specific needs.

Remapping examples

The channel remapping will be effective if, and only if:
*<gain coefficients are zeroes or ones,>
*<only one input per channel output,>

If all these conditions are satisfied, the filter will notify the user ("Pure channel mapping detected"), and use an optimized and lossless method to do the remapping.

For example, if you have a 5.1 source and want a stereo audio stream by dropping the extra channels:

pan="stereo| c0=FL | c1=FR"

Given the same source, you can also switch front left and front right channels and keep the input channel layout:

pan="5.1| c0=c1 | c1=c0 | c2=c2 | c3=c3 | c4=c4 | c5=c5"

If the input is a stereo audio stream, you can mute the front left channel (and still keep the stereo channel layout) with:

pan="stereo|c1=c1"

Still with a stereo audio stream input, you can copy the right channel in both front left and right:

pan="stereo| c0=FR | c1=FR"

replaygain
ReplayGain scanner filter. This filter takes an audio stream as an input and outputs it unchanged. At end of filtering it displays "track_gain" and "track_peak".

The filter accepts the following exported read-only options:
track_gain

Exported track gain in dB at end of stream.

track_peak

Exported track peak at end of stream.

resample
Convert the audio sample format, sample rate and channel layout. It is not meant to be used directly.

rubberband
Apply time-stretching and pitch-shifting with librubberband.

To enable compilation of this filter, you need to configure FFmpeg with "--enable-librubberband".

The filter accepts the following options:
tempo

Set tempo scale factor.

pitch

Set pitch scale factor.

transients

Set transients detector. Possible values are:
crisp
mixed
smooth

detector

Set detector. Possible values are:
compound
percussive
soft

phase

Set phase. Possible values are:
laminar
independent

window

Set processing window size. Possible values are:
standard
short
long

smoothing

Set smoothing. Possible values are:

off

on

formant

Enable formant preservation when shift pitching. Possible values are:
shifted
preserved

pitchq

Set pitch quality. Possible values are:
quality
speed
consistency

channels

Set channels. Possible values are:
apart
together

Commands

This filter supports the following commands:
tempo

Change filter tempo scale factor. Syntax for the command is : "tempo"

pitch

Change filter pitch scale factor. Syntax for the command is : "pitch"

sidechaincompress
This filter acts like normal compressor but has the ability to compress detected signal using second input signal. It needs two input streams and returns one output stream. First input stream will be processed depending on second stream signal. The filtered signal then can be filtered with other filters in later stages of processing. See pan and amerge filter.

The filter accepts the following options:
level_in

Set input gain. Default is 1. Range is between 0.015625 and 64.

mode

Set mode of compressor operation. Can be "upward" or "downward". Default is "downward".

threshold

If a signal of second stream raises above this level it will affect the gain reduction of first stream. By default is 0.125. Range is between 0.00097563 and 1.

ratio

Set a ratio about which the signal is reduced. 1:2 means that if the level raised 4dB above the threshold, it will be only 2dB above after the reduction. Default is 2. Range is between 1 and 20.

attack

Amount of milliseconds the signal has to rise above the threshold before gain reduction starts. Default is 20. Range is between 0.01 and 2000.

release

Amount of milliseconds the signal has to fall below the threshold before reduction is decreased again. Default is 250. Range is between 0.01 and 9000.

makeup

Set the amount by how much signal will be amplified after processing. Default is 1. Range is from 1 to 64.

knee

Curve the sharp knee around the threshold to enter gain reduction more softly. Default is 2.82843. Range is between 1 and 8.

link

Choose if the "average" level between all channels of side-chain stream or the louder("maximum") channel of side-chain stream affects the reduction. Default is "average".

detection

Should the exact signal be taken in case of "peak" or an RMS one in case of "rms". Default is "rms" which is mainly smoother.

level_sc

Set sidechain gain. Default is 1. Range is between 0.015625 and 64.

mix

How much to use compressed signal in output. Default is 1. Range is between 0 and 1.

Commands

This filter supports the all above options as commands.

Examples

Full ffmpeg example taking 2 audio inputs, 1st input to be compressed depending on the signal of 2nd input and later compressed signal to be merged with 2nd input:

ffmpeg -i main.flac -i sidechain.flac -filter_complex "[1:a]asplit=2[sc][mix];[0:a][sc]sidechaincompress[compr];[compr][mix]amerge"

sidechaingate
A sidechain gate acts like a normal (wideband) gate but has the ability to filter the detected signal before sending it to the gain reduction stage. Normally a gate uses the full range signal to detect a level above the threshold. For example: If you cut all lower frequencies from your sidechain signal the gate will decrease the volume of your track only if not enough highs appear. With this technique you are able to reduce the resonation of a natural drum or remove "rumbling" of muted strokes from a heavily distorted guitar. It needs two input streams and returns one output stream. First input stream will be processed depending on second stream signal.

The filter accepts the following options:
level_in

Set input level before filtering. Default is 1. Allowed range is from 0.015625 to 64.

mode

Set the mode of operation. Can be "upward" or "downward". Default is "downward". If set to "upward" mode, higher parts of signal will be amplified, expanding dynamic range in upward direction. Otherwise, in case of "downward" lower parts of signal will be reduced.

range

Set the level of gain reduction when the signal is below the threshold. Default is 0.06125. Allowed range is from 0 to 1. Setting this to 0 disables reduction and then filter behaves like expander.

threshold

If a signal rises above this level the gain reduction is released. Default is 0.125. Allowed range is from 0 to 1.

ratio

Set a ratio about which the signal is reduced. Default is 2. Allowed range is from 1 to 9000.

attack

Amount of milliseconds the signal has to rise above the threshold before gain reduction stops. Default is 20 milliseconds. Allowed range is from 0.01 to 9000.

release

Amount of milliseconds the signal has to fall below the threshold before the reduction is increased again. Default is 250 milliseconds. Allowed range is from 0.01 to 9000.

makeup

Set amount of amplification of signal after processing. Default is 1. Allowed range is from 1 to 64.

knee

Curve the sharp knee around the threshold to enter gain reduction more softly. Default is 2.828427125. Allowed range is from 1 to 8.

detection

Choose if exact signal should be taken for detection or an RMS like one. Default is rms. Can be peak or rms.

link

Choose if the average level between all channels or the louder channel affects the reduction. Default is average. Can be average or maximum.

level_sc

Set sidechain gain. Default is 1. Range is from 0.015625 to 64.

Commands

This filter supports the all above options as commands.

silencedetect
Detect silence in an audio stream.

This filter logs a message when it detects that the input audio volume is less or equal to a noise tolerance value for a duration greater or equal to the minimum detected noise duration.

The printed times and duration are expressed in seconds. The "lavfi.silence_start" or "lavfi.silence_start.X" metadata key is set on the first frame whose timestamp equals or exceeds the detection duration and it contains the timestamp of the first frame of the silence.

The "lavfi.silence_duration" or "lavfi.silence_duration.X" and "lavfi.silence_end" or "lavfi.silence_end.X" metadata keys are set on the first frame after the silence. If mono is enabled, and each channel is evaluated separately, the ".X" suffixed keys are used, and "X" corresponds to the channel number.

The filter accepts the following options:
noise, n

Set noise tolerance. Can be specified in dB (in case "dB" is appended to the specified value) or amplitude ratio. Default is -60dB, or 0.001.

duration, d

Set silence duration until notification (default is 2 seconds). See the Time duration section in the ffmpeg-utils(1) manual for the accepted syntax.

mono, m

Process each channel separately, instead of combined. By default is disabled.

Examples

Detect 5 seconds of silence with -50dB noise tolerance:

silencedetect=n=-50dB:d=5

Complete example with ffmpeg to detect silence with 0.0001 noise tolerance in silence.mp3:

ffmpeg -i silence.mp3 -af silencedetect=noise=0.0001 -f null -

silenceremove
Remove silence from the beginning, middle or end of the audio.

The filter accepts the following options:
start_periods

This value is used to indicate if audio should be trimmed at beginning of the audio. A value of zero indicates no silence should be trimmed from the beginning. When specifying a non-zero value, it trims audio up until it finds non-silence. Normally, when trimming silence from beginning of audio the start_periods will be 1 but it can be increased to higher values to trim all audio up to specific count of non-silence periods. Default value is 0.

start_duration

Specify the amount of time that non-silence must be detected before it stops trimming audio. By increasing the duration, bursts of noises can be treated as silence and trimmed off. Default value is 0.

start_threshold

This indicates what sample value should be treated as silence. For digital audio, a value of 0 may be fine but for audio recorded from analog, you may wish to increase the value to account for background noise. Can be specified in dB (in case "dB" is appended to the specified value) or amplitude ratio. Default value is 0.

start_silence

Specify max duration of silence at beginning that will be kept after trimming. Default is 0, which is equal to trimming all samples detected as silence.

start_mode

Specify mode of detection of silence end at start of multi-channel audio. Can be any or all. Default is any. With any, any sample from any channel that is detected as non-silence will trigger end of silence trimming at start of audio stream. With all, only if every sample from every channel is detected as non-silence will trigger end of silence trimming at start of audio stream, limited usage.

stop_periods

Set the count for trimming silence from the end of audio. When specifying a positive value, it trims audio after it finds specified silence period. To remove silence from the middle of a file, specify a stop_periods that is negative. This value is then treated as a positive value and is used to indicate the effect should restart processing as specified by stop_periods, making it suitable for removing periods of silence in the middle of the audio. Default value is 0.

stop_duration

Specify a duration of silence that must exist before audio is not copied any more. By specifying a higher duration, silence that is wanted can be left in the audio. Default value is 0.

stop_threshold

This is the same as start_threshold but for trimming silence from the end of audio. Can be specified in dB (in case "dB" is appended to the specified value) or amplitude ratio. Default value is 0.

stop_silence

Specify max duration of silence at end that will be kept after trimming. Default is 0, which is equal to trimming all samples detected as silence.

stop_mode

Specify mode of detection of silence start after start of multi-channel audio. Can be any or all. Default is all. With any, any sample from any channel that is detected as silence will trigger start of silence trimming after start of audio stream, limited usage. With all, only if every sample from every channel is detected as silence will trigger start of silence trimming after start of audio stream.

detection

Set how is silence detected.

avg

Mean of absolute values of samples in moving window.

rms

Root squared mean of absolute values of samples in moving window.

peak

Maximum of absolute values of samples in moving window.

median

Median of absolute values of samples in moving window.

ptp

Absolute of max peak to min peak difference of samples in moving window.

dev

Standard deviation of values of samples in moving window.

Default value is "rms".

window

Set duration in number of seconds used to calculate size of window in number of samples for detecting silence. Using 0 will effectively disable any windowing and use only single sample per channel for silence detection. In that case it may be needed to also set start_silence and/or stop_silence to nonzero values with also start_duration and/or stop_duration to nonzero values. Default value is 0.02. Allowed range is from 0 to 10.

timestamp

Set processing mode of every audio frame output timestamp.
write

Full timestamps rewrite, keep only the start time for the first output frame.

copy

Non-dropped frames are left with same timestamp as input audio frame.

Defaults value is "write".

Examples

The following example shows how this filter can be used to start a recording that does not contain the delay at the start which usually occurs between pressing the record button and the start of the performance:

silenceremove=start_periods=1:start_duration=5:start_threshold=0.02

Trim all silence encountered from beginning to end where there is more than 1 second of silence in audio:

silenceremove=stop_periods=-1:stop_duration=1:stop_threshold=-90dB

Trim all digital silence samples, using peak detection, from beginning to end where there is more than 0 samples of digital silence in audio and digital silence is detected in all channels at same positions in stream:

silenceremove=window=0:detection=peak:stop_mode=all:start_mode=all:stop_periods=-1:stop_threshold=0

Trim every 2nd encountered silence period from beginning to end where there is more than 1 second of silence per silence period in audio:

silenceremove=stop_periods=-2:stop_duration=1:stop_threshold=-90dB

Similar as above, but keep maximum of 0.5 seconds of silence from each trimmed period:

silenceremove=stop_periods=-2:stop_duration=1:stop_threshold=-90dB:stop_silence=0.5

Similar as above, but keep maximum of 1.5 seconds of silence from start of audio:

silenceremove=stop_periods=-2:stop_duration=1:stop_threshold=-90dB:stop_silence=0.5:start_periods=1:start_duration=1:start_silence=1.5:stop_threshold=-90dB

Commands

This filter supports some above options as commands.

sofalizer
SOFAlizer uses head-related transfer functions (HRTFs) to create virtual loudspeakers around the user for binaural listening via headphones (audio formats up to 9 channels supported). The HRTFs are stored in SOFA files (see <http://www.sofacoustics.org/> for a database). SOFAlizer is developed at the Acoustics Research Institute (ARI) of the Austrian Academy of Sciences.

To enable compilation of this filter you need to configure FFmpeg with "--enable-libmysofa".

The filter accepts the following options:
sofa

Set the SOFA file used for rendering.

gain

Set gain applied to audio. Value is in dB. Default is 0.

rotation

Set rotation of virtual loudspeakers in deg. Default is 0.

elevation

Set elevation of virtual speakers in deg. Default is 0.

radius

Set distance in meters between loudspeakers and the listener with near-field HRTFs. Default is 1.

type

Set processing type. Can be time or freq. time is processing audio in time domain which is slow. freq is processing audio in frequency domain which is fast. Default is freq.

speakers

Set custom positions of virtual loudspeakers. Syntax for this option is: <CH> <AZIM> <ELEV>[|<CH> <AZIM> <ELEV>|...]. Each virtual loudspeaker is described with short channel name following with azimuth and elevation in degrees. Each virtual loudspeaker description is separated by ’|’. For example to override front left and front right channel positions use: ’speakers=FL 45 15|FR 345 15’. Descriptions with unrecognised channel names are ignored.

lfegain

Set custom gain for LFE channels. Value is in dB. Default is 0.

framesize

Set custom frame size in number of samples. Default is 1024. Allowed range is from 1024 to 96000. Only used if option type is set to freq.

normalize

Should all IRs be normalized upon importing SOFA file. By default is enabled.

interpolate

Should nearest IRs be interpolated with neighbor IRs if exact position does not match. By default is disabled.

minphase

Minphase all IRs upon loading of SOFA file. By default is disabled.

anglestep

Set neighbor search angle step. Only used if option interpolate is enabled.

radstep

Set neighbor search radius step. Only used if option interpolate is enabled.

Examples

Using ClubFritz6 sofa file:

sofalizer=sofa=/path/to/ClubFritz6.sofa:type=freq:radius=1

Using ClubFritz12 sofa file and bigger radius with small rotation:

sofalizer=sofa=/path/to/ClubFritz12.sofa:type=freq:radius=2:rotation=5

Similar as above but with custom speaker positions for front left, front right, back left and back right and also with custom gain:

"sofalizer=sofa=/path/to/ClubFritz6.sofa:type=freq:radius=2:speakers=FL 45|FR 315|BL 135|BR 225:gain=28"

speechnorm
Speech Normalizer.

This filter expands or compresses each half-cycle of audio samples (local set of samples all above or all below zero and between two nearest zero crossings) depending on threshold value, so audio reaches target peak value under conditions controlled by below options.

The filter accepts the following options:
peak, p

Set the expansion target peak value. This specifies the highest allowed absolute amplitude level for the normalized audio input. Default value is 0.95. Allowed range is from 0.0 to 1.0.

expansion, e

Set the maximum expansion factor. Allowed range is from 1.0 to 50.0. Default value is 2.0. This option controls maximum local half-cycle of samples expansion. The maximum expansion would be such that local peak value reaches target peak value but never to surpass it and that ratio between new and previous peak value does not surpass this option value.

compression, c

Set the maximum compression factor. Allowed range is from 1.0 to 50.0. Default value is 2.0. This option controls maximum local half-cycle of samples compression. This option is used only if threshold option is set to value greater than 0.0, then in such cases when local peak is lower or same as value set by threshold all samples belonging to that peak’s half-cycle will be compressed by current compression factor.

threshold, t

Set the threshold value. Default value is 0.0. Allowed range is from 0.0 to 1.0. This option specifies which half-cycles of samples will be compressed and which will be expanded. Any half-cycle samples with their local peak value below or same as this option value will be compressed by current compression factor, otherwise, if greater than threshold value they will be expanded with expansion factor so that it could reach peak target value but never surpass it.

raise, r

Set the expansion raising amount per each half-cycle of samples. Default value is 0.001. Allowed range is from 0.0 to 1.0. This controls how fast expansion factor is raised per each new half-cycle until it reaches expansion value. Setting this options too high may lead to distortions.

fall, f

Set the compression raising amount per each half-cycle of samples. Default value is 0.001. Allowed range is from 0.0 to 1.0. This controls how fast compression factor is raised per each new half-cycle until it reaches compression value.

channels, h

Specify which channels to filter, by default all available channels are filtered.

invert, i

Enable inverted filtering, by default is disabled. This inverts interpretation of threshold option. When enabled any half-cycle of samples with their local peak value below or same as threshold option will be expanded otherwise it will be compressed.

link, l

Link channels when calculating gain applied to each filtered channel sample, by default is disabled. When disabled each filtered channel gain calculation is independent, otherwise when this option is enabled the minimum of all possible gains for each filtered channel is used.

rms, m

Set the expansion target RMS value. This specifies the highest allowed RMS level for the normalized audio input. Default value is 0.0, thus disabled. Allowed range is from 0.0 to 1.0.

Commands

This filter supports the all above options as commands.

Examples

Weak and slow amplification:

speechnorm=e=3:r=0.00001:l=1

Moderate and slow amplification:

speechnorm=e=6.25:r=0.00001:l=1

Strong and fast amplification:

speechnorm=e=12.5:r=0.0001:l=1

Very strong and fast amplification:

speechnorm=e=25:r=0.0001:l=1

Extreme and fast amplification:

speechnorm=e=50:r=0.0001:l=1

stereotools
This filter has some handy utilities to manage stereo signals, for converting M/S stereo recordings to L/R signal while having control over the parameters or spreading the stereo image of master track.

The filter accepts the following options:
level_in

Set input level before filtering for both channels. Defaults is 1. Allowed range is from 0.015625 to 64.

level_out

Set output level after filtering for both channels. Defaults is 1. Allowed range is from 0.015625 to 64.

balance_in

Set input balance between both channels. Default is 0. Allowed range is from -1 to 1.

balance_out

Set output balance between both channels. Default is 0. Allowed range is from -1 to 1.

softclip

Enable softclipping. Results in analog distortion instead of harsh digital 0dB clipping. Disabled by default.

mutel

Mute the left channel. Disabled by default.

muter

Mute the right channel. Disabled by default.

phasel

Change the phase of the left channel. Disabled by default.

phaser

Change the phase of the right channel. Disabled by default.

mode

Set stereo mode. Available values are:
lr>lr

Left/Right to Left/Right, this is default.

lr>ms

Left/Right to Mid/Side.

ms>lr

Mid/Side to Left/Right.

lr>ll

Left/Right to Left/Left.

lr>rr

Left/Right to Right/Right.

lr>l+r

Left/Right to Left + Right.

lr>rl

Left/Right to Right/Left.

ms>ll

Mid/Side to Left/Left.

ms>rr

Mid/Side to Right/Right.

ms>rl

Mid/Side to Right/Left.

lr>l-r

Left/Right to Left - Right.

slev

Set level of side signal. Default is 1. Allowed range is from 0.015625 to 64.

sbal

Set balance of side signal. Default is 0. Allowed range is from -1 to 1.

mlev

Set level of the middle signal. Default is 1. Allowed range is from 0.015625 to 64.

mpan

Set middle signal pan. Default is 0. Allowed range is from -1 to 1.

base

Set stereo base between mono and inversed channels. Default is 0. Allowed range is from -1 to 1.

delay

Set delay in milliseconds how much to delay left from right channel and vice versa. Default is 0. Allowed range is from -20 to 20.

sclevel

Set S/C level. Default is 1. Allowed range is from 1 to 100.

phase

Set the stereo phase in degrees. Default is 0. Allowed range is from 0 to 360.

bmode_in, bmode_out

Set balance mode for balance_in/balance_out option.

Can be one of the following:
balance

Classic balance mode. Attenuate one channel at time. Gain is raised up to 1.

amplitude

Similar as classic mode above but gain is raised up to 2.

power

Equal power distribution, from -6dB to +6dB range.

Commands

This filter supports the all above options as commands.

Examples

Apply karaoke like effect:

stereotools=mlev=0.015625

Convert M/S signal to L/R:

"stereotools=mode=ms>lr"

stereowiden
This filter enhance the stereo effect by suppressing signal common to both channels and by delaying the signal of left into right and vice versa, thereby widening the stereo effect.

The filter accepts the following options:
delay

Time in milliseconds of the delay of left signal into right and vice versa. Default is 20 milliseconds.

feedback

Amount of gain in delayed signal into right and vice versa. Gives a delay effect of left signal in right output and vice versa which gives widening effect. Default is 0.3.

crossfeed

Cross feed of left into right with inverted phase. This helps in suppressing the mono. If the value is 1 it will cancel all the signal common to both channels. Default is 0.3.

drymix

Set level of input signal of original channel. Default is 0.8.

Commands

This filter supports the all above options except "delay" as commands.

superequalizer
Apply 18 band equalizer.

The filter accepts the following options:

1b

Set 65Hz band gain.

2b

Set 92Hz band gain.

3b

Set 131Hz band gain.

4b

Set 185Hz band gain.

5b

Set 262Hz band gain.

6b

Set 370Hz band gain.

7b

Set 523Hz band gain.

8b

Set 740Hz band gain.

9b

Set 1047Hz band gain.

10b

Set 1480Hz band gain.

11b

Set 2093Hz band gain.

12b

Set 2960Hz band gain.

13b

Set 4186Hz band gain.

14b

Set 5920Hz band gain.

15b

Set 8372Hz band gain.

16b

Set 11840Hz band gain.

17b

Set 16744Hz band gain.

18b

Set 20000Hz band gain.

surround
Apply audio surround upmix filter.

This filter allows to produce multichannel output from audio stream.

The filter accepts the following options:
chl_out

Set output channel layout. By default, this is 5.1.

See the Channel Layout section in the ffmpeg-utils(1) manual for the required syntax.

chl_in

Set input channel layout. By default, this is stereo.

See the Channel Layout section in the ffmpeg-utils(1) manual for the required syntax.

level_in

Set input volume level. By default, this is 1.

level_out

Set output volume level. By default, this is 1.

lfe

Enable LFE channel output if output channel layout has it. By default, this is enabled.

lfe_low

Set LFE low cut off frequency. By default, this is 128 Hz.

lfe_high

Set LFE high cut off frequency. By default, this is 256 Hz.

lfe_mode

Set LFE mode, can be add or sub. Default is add. In add mode, LFE channel is created from input audio and added to output. In sub mode, LFE channel is created from input audio and added to output but also all non-LFE output channels are subtracted with output LFE channel.

smooth

Set temporal smoothness strength, used to gradually change factors when transforming stereo sound in time. Allowed range is from 0.0 to 1.0. Useful to improve output quality with focus option values greater than 0.0. Default is 0.0. Only values inside this range and without edges are effective.

angle

Set angle of stereo surround transform, Allowed range is from 0 to 360. Default is 90.

focus

Set focus of stereo surround transform, Allowed range is from -1 to 1. Default is 0.

fc_in

Set front center input volume. By default, this is 1.

fc_out

Set front center output volume. By default, this is 1.

fl_in

Set front left input volume. By default, this is 1.

fl_out

Set front left output volume. By default, this is 1.

fr_in

Set front right input volume. By default, this is 1.

fr_out

Set front right output volume. By default, this is 1.

sl_in

Set side left input volume. By default, this is 1.

sl_out

Set side left output volume. By default, this is 1.

sr_in

Set side right input volume. By default, this is 1.

sr_out

Set side right output volume. By default, this is 1.

bl_in

Set back left input volume. By default, this is 1.

bl_out

Set back left output volume. By default, this is 1.

br_in

Set back right input volume. By default, this is 1.

br_out

Set back right output volume. By default, this is 1.

bc_in

Set back center input volume. By default, this is 1.

bc_out

Set back center output volume. By default, this is 1.

lfe_in

Set LFE input volume. By default, this is 1.

lfe_out

Set LFE output volume. By default, this is 1.

allx

Set spread usage of stereo image across X axis for all channels. Allowed range is from -1 to 15. By default this value is negative -1, and thus unused.

ally

Set spread usage of stereo image across Y axis for all channels. Allowed range is from -1 to 15. By default this value is negative -1, and thus unused.

fcx, flx, frx, blx, brx, slx, srx, bcx

Set spread usage of stereo image across X axis for each channel. Allowed range is from 0.06 to 15. By default this value is 0.5.

fcy, fly, fry, bly, bry, sly, sry, bcy

Set spread usage of stereo image across Y axis for each channel. Allowed range is from 0.06 to 15. By default this value is 0.5.

win_size

Set window size. Allowed range is from 1024 to 65536. Default size is 4096.

win_func

Set window function.

It accepts the following values:
rect
bartlett
hann, hanning
hamming
blackman
welch
flattop
bharris
bnuttall
bhann
sine
nuttall
lanczos
gauss
tukey
dolph
cauchy
parzen
poisson
bohman
kaiser

Default is "hann".

overlap

Set window overlap. If set to 1, the recommended overlap for selected window function will be picked. Default is 0.5.

tiltshelf
Boost or cut the lower frequencies and cut or boost higher frequencies of the audio using a two-pole shelving filter with a response similar to that of a standard hi-fi’s tone-controls. This is also known as shelving equalisation (EQ).

The filter accepts the following options:
gain, g

Give the gain at 0 Hz. Its useful range is about -20 (for a large cut) to +20 (for a large boost). Beware of clipping when using a positive gain.

frequency, f

Set the filter’s central frequency and so can be used to extend or reduce the frequency range to be boosted or cut. The default value is 3000 Hz.

width_type, t

Set method to specify band-width of filter.

h

Hz

q

Q-Factor

o

octave

s

slope

k

kHz

width, w

Determine how steep is the filter’s shelf transition.

poles, p

Set number of poles. Default is 2.

mix, m

How much to use filtered signal in output. Default is 1. Range is between 0 and 1.

channels, c

Specify which channels to filter, by default all available are filtered.

normalize, n

Normalize biquad coefficients, by default is disabled. Enabling it will normalize magnitude response at DC to 0dB.

transform, a

Set transform type of IIR filter.

di

dii

tdi

tdii
latt

svf

zdf

precision, r

Set precison of filtering.
auto

Pick automatic sample format depending on surround filters.

s16

Always use signed 16-bit.

s32

Always use signed 32-bit.

f32

Always use float 32-bit.

f64

Always use float 64-bit.

block_size, b

Set block size used for reverse IIR processing. If this value is set to high enough value (higher than impulse response length truncated when reaches near zero values) filtering will become linear phase otherwise if not big enough it will just produce nasty artifacts.

Note that filter delay will be exactly this many samples when set to non-zero value.

Commands

This filter supports some options as commands.

treble, highshelf
Boost or cut treble (upper) frequencies of the audio using a two-pole shelving filter with a response similar to that of a standard hi-fi’s tone-controls. This is also known as shelving equalisation (EQ).

The filter accepts the following options:
gain, g

Give the gain at whichever is the lower of ~22 kHz and the Nyquist frequency. Its useful range is about -20 (for a large cut) to +20 (for a large boost). Beware of clipping when using a positive gain.

frequency, f

Set the filter’s central frequency and so can be used to extend or reduce the frequency range to be boosted or cut. The default value is 3000 Hz.

width_type, t

Set method to specify band-width of filter.

h

Hz

q

Q-Factor

o

octave

s

slope

k

kHz

width, w

Determine how steep is the filter’s shelf transition.

poles, p

Set number of poles. Default is 2.

mix, m

How much to use filtered signal in output. Default is 1. Range is between 0 and 1.

channels, c

Specify which channels to filter, by default all available are filtered.

normalize, n

Normalize biquad coefficients, by default is disabled. Enabling it will normalize magnitude response at DC to 0dB.

transform, a

Set transform type of IIR filter.

di

dii

tdi

tdii
latt

svf

zdf

precision, r

Set precison of filtering.
auto

Pick automatic sample format depending on surround filters.

s16

Always use signed 16-bit.

s32

Always use signed 32-bit.

f32

Always use float 32-bit.

f64

Always use float 64-bit.

block_size, b

Set block size used for reverse IIR processing. If this value is set to high enough value (higher than impulse response length truncated when reaches near zero values) filtering will become linear phase otherwise if not big enough it will just produce nasty artifacts.

Note that filter delay will be exactly this many samples when set to non-zero value.

Commands

This filter supports the following commands:
frequency, f

Change treble frequency. Syntax for the command is : "frequency"

width_type, t

Change treble width_type. Syntax for the command is : "width_type"

width, w

Change treble width. Syntax for the command is : "width"

gain, g

Change treble gain. Syntax for the command is : "gain"

mix, m

Change treble mix. Syntax for the command is : "mix"

tremolo
Sinusoidal amplitude modulation.

The filter accepts the following options:

f

Modulation frequency in Hertz. Modulation frequencies in the subharmonic range (20 Hz or lower) will result in a tremolo effect. This filter may also be used as a ring modulator by specifying a modulation frequency higher than 20 Hz. Range is 0.1 - 20000.0. Default value is 5.0 Hz.

d

Depth of modulation as a percentage. Range is 0.0 - 1.0. Default value is 0.5.

vibrato
Sinusoidal phase modulation.

The filter accepts the following options:

f

Modulation frequency in Hertz. Range is 0.1 - 20000.0. Default value is 5.0 Hz.

d

Depth of modulation as a percentage. Range is 0.0 - 1.0. Default value is 0.5.

virtualbass
Apply audio Virtual Bass filter.

This filter accepts stereo input and produce stereo with LFE (2.1) channels output. The newly produced LFE channel have enhanced virtual bass originally obtained from both stereo channels. This filter outputs front left and front right channels unchanged as available in stereo input.

The filter accepts the following options:
cutoff

Set the virtual bass cutoff frequency. Default value is 250 Hz. Allowed range is from 100 to 500 Hz.

strength

Set the virtual bass strength. Allowed range is from 0.5 to 3. Default value is 3.

volume
Adjust the input audio volume.

It accepts the following parameters:
volume

Set audio volume expression.

Output values are clipped to the maximum value.

The output audio volume is given by the relation:

<output_volume> = <volume> * <input_volume>

The default value for volume is "1.0".

precision

This parameter represents the mathematical precision.

It determines which input sample formats will be allowed, which affects the precision of the volume scaling.
fixed

8-bit fixed-point; this limits input sample format to U8, S16, and S32.

float

32-bit floating-point; this limits input sample format to FLT. (default)

double

64-bit floating-point; this limits input sample format to DBL.

replaygain

Choose the behaviour on encountering ReplayGain side data in input frames.
drop

Remove ReplayGain side data, ignoring its contents (the default).

ignore

Ignore ReplayGain side data, but leave it in the frame.

track

Prefer the track gain, if present.

album

Prefer the album gain, if present.

replaygain_preamp

Pre-amplification gain in dB to apply to the selected replaygain gain.

Default value for replaygain_preamp is 0.0.

replaygain_noclip

Prevent clipping by limiting the gain applied.

Default value for replaygain_noclip is 1.

eval

Set when the volume expression is evaluated.

It accepts the following values:
once

only evaluate expression once during the filter initialization, or when the volume command is sent

frame

evaluate expression for each incoming frame

Default value is once.

The volume expression can contain the following parameters.

n

frame number (starting at zero)

nb_channels

number of channels

nb_consumed_samples

number of samples consumed by the filter

nb_samples

number of samples in the current frame

pos

original frame position in the file; deprecated, do not use

pts

frame PTS

sample_rate

sample rate

startpts

PTS at start of stream

startt

time at start of stream

t

frame time

tb

timestamp timebase

volume

last set volume value

Note that when eval is set to once only the sample_rate and tb variables are available, all other variables will evaluate to NAN.

Commands

This filter supports the following commands:
volume

Modify the volume expression. The command accepts the same syntax of the corresponding option.

If the specified expression is not valid, it is kept at its current value.

Examples

Halve the input audio volume:

volume=volume=0.5
volume=volume=1/2
volume=volume=-6.0206dB

In all the above example the named key for volume can be omitted, for example like in:

volume=0.5

Increase input audio power by 6 decibels using fixed-point precision:

volume=volume=6dB:precision=fixed

Fade volume after time 10 with an annihilation period of 5 seconds:

volume='if(lt(t,10),1,max(1-(t-10)/5,0))':eval=frame

volumedetect
Detect the volume of the input video.

The filter has no parameters. It supports only 16-bit signed integer samples, so the input will be converted when needed. Statistics about the volume will be printed in the log when the input stream end is reached.

In particular it will show the mean volume (root mean square), maximum volume (on a per-sample basis), and the beginning of a histogram of the registered volume values (from the maximum value to a cumulated 1/1000 of the samples).

All volumes are in decibels relative to the maximum PCM value.

Examples

Here is an excerpt of the output:

[Parsed_volumedetect_0 0xa23120] mean_volume: -27 dB
[Parsed_volumedetect_0 0xa23120] max_volume: -4 dB
[Parsed_volumedetect_0 0xa23120] histogram_4db: 6
[Parsed_volumedetect_0 0xa23120] histogram_5db: 62
[Parsed_volumedetect_0 0xa23120] histogram_6db: 286
[Parsed_volumedetect_0 0xa23120] histogram_7db: 1042
[Parsed_volumedetect_0 0xa23120] histogram_8db: 2551
[Parsed_volumedetect_0 0xa23120] histogram_9db: 4609
[Parsed_volumedetect_0 0xa23120] histogram_10db: 8409

It means that:

The mean square energy is approximately -27 dB, or 10^-2.7.

The largest sample is at -4 dB, or more precisely between -4 dB and -5 dB.

There are 6 samples at -4 dB, 62 at -5 dB, 286 at -6 dB, etc.

In other words, raising the volume by +4 dB does not cause any clipping, raising it by +5 dB causes clipping for 6 samples, etc.

AUDIO SOURCES

Below is a description of the currently available audio sources.

abuffer
Buffer audio frames, and make them available to the filter chain.

This source is mainly intended for a programmatic use, in particular through the interface defined in libavfilter/buffersrc.h.

It accepts the following parameters:
time_base

The timebase which will be used for timestamps of submitted frames. It must be either a floating-point number or in numerator/denominator form.

sample_rate

The sample rate of the incoming audio buffers.

sample_fmt

The sample format of the incoming audio buffers. Either a sample format name or its corresponding integer representation from the enum AVSampleFormat in libavutil/samplefmt.h

channel_layout

The channel layout of the incoming audio buffers. Either a channel layout name from channel_layout_map in libavutil/channel_layout.c or its corresponding integer representation from the AV_CH_LAYOUT_* macros in libavutil/channel_layout.h

channels

The number of channels of the incoming audio buffers. If both channels and channel_layout are specified, then they must be consistent.

Examples

abuffer=sample_rate=44100:sample_fmt=s16p:channel_layout=stereo

will instruct the source to accept planar 16bit signed stereo at 44100Hz. Since the sample format with name "s16p" corresponds to the number 6 and the "stereo" channel layout corresponds to the value 0x3, this is equivalent to:

abuffer=sample_rate=44100:sample_fmt=6:channel_layout=0x3

aevalsrc
Generate an audio signal specified by an expression.

This source accepts in input one or more expressions (one for each channel), which are evaluated and used to generate a corresponding audio signal.

This source accepts the following options:
exprs

Set the ’|’-separated expressions list for each separate channel. In case the channel_layout option is not specified, the selected channel layout depends on the number of provided expressions. Otherwise the last specified expression is applied to the remaining output channels.

channel_layout, c

Set the channel layout. The number of channels in the specified layout must be equal to the number of specified expressions.

duration, d

Set the minimum duration of the sourced audio. See the Time duration section in the ffmpeg-utils(1) manual for the accepted syntax. Note that the resulting duration may be greater than the specified duration, as the generated audio is always cut at the end of a complete frame.

If not specified, or the expressed duration is negative, the audio is supposed to be generated forever.

nb_samples, n

Set the number of samples per channel per each output frame, default to 1024.

sample_rate, s

Specify the sample rate, default to 44100.

Each expression in exprs can contain the following constants:

n

number of the evaluated sample, starting from 0

t

time of the evaluated sample expressed in seconds, starting from 0

s

sample rate

Examples

Generate silence:

aevalsrc=0

Generate a sin signal with frequency of 440 Hz, set sample rate to 8000 Hz:

aevalsrc="sin(440*2*PI*t):s=8000"

Generate a two channels signal, specify the channel layout (Front Center + Back Center) explicitly:

aevalsrc="sin(420*2*PI*t)|cos(430*2*PI*t):c=FC|BC"

Generate white noise:

aevalsrc="-2+random(0)"

Generate an amplitude modulated signal:

aevalsrc="sin(10*2*PI*t)*sin(880*2*PI*t)"

Generate 2.5 Hz binaural beats on a 360 Hz carrier:

aevalsrc="0.1*sin(2*PI*(360-2.5/2)*t) | 0.1*sin(2*PI*(360+2.5/2)*t)"

afdelaysrc
Generate a fractional delay FIR coefficients.

The resulting stream can be used with afir filter for filtering the audio signal.

The filter accepts the following options:
delay, d

Set the fractional delay. Default is 0.

sample_rate, r

Set the sample rate, default is 44100.

nb_samples, n

Set the number of samples per each frame. Default is 1024.

taps, t

Set the number of filter coefficents in output audio stream. Default value is 0.

channel_layout, c

Specifies the channel layout, and can be a string representing a channel layout. The default value of channel_layout is "stereo".

afireqsrc
Generate a FIR equalizer coefficients.

The resulting stream can be used with afir filter for filtering the audio signal.

The filter accepts the following options:
preset, p

Set equalizer preset. Default preset is "flat".

Available presets are:
custom
flat
acoustic
bass
beats
classic
clear
deep bass
dubstep
electronic
hard-style
hip-hop
jazz
metal
movie

pop

r&b

rock
vocal booster

gains, g

Set custom gains for each band. Only used if the preset option is set to "custom". Gains are separated by white spaces and each gain is set in dBFS. Default is "0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0".

bands, b

Set the custom bands from where custon equalizer gains are set. This must be in strictly increasing order. Only used if the preset option is set to "custom". Bands are separated by white spaces and each band represent frequency in Hz. Default is "25 40 63 100 160 250 400 630 1000 1600 2500 4000 6300 10000 16000 24000".

taps, t

Set number of filter coefficents in output audio stream. Default value is 4096.

sample_rate, r

Set sample rate of output audio stream, default is 44100.

nb_samples, n

Set number of samples per each frame in output audio stream. Default is 1024.

interp, i

Set interpolation method for FIR equalizer coefficients. Can be "linear" or "cubic".

phase, h

Set phase type of FIR filter. Can be "linear" or "min": minimum-phase. Default is minimum-phase filter.

afirsrc
Generate a FIR coefficients using frequency sampling method.

The resulting stream can be used with afir filter for filtering the audio signal.

The filter accepts the following options:
taps, t

Set number of filter coefficents in output audio stream. Default value is 1025.

frequency, f

Set frequency points from where magnitude and phase are set. This must be in non decreasing order, and first element must be 0, while last element must be 1. Elements are separated by white spaces.

magnitude, m

Set magnitude value for every frequency point set by frequency. Number of values must be same as number of frequency points. Values are separated by white spaces.

phase, p

Set phase value for every frequency point set by frequency. Number of values must be same as number of frequency points. Values are separated by white spaces.

sample_rate, r

Set sample rate, default is 44100.

nb_samples, n

Set number of samples per each frame. Default is 1024.

win_func, w

Set window function. Default is blackman.

anullsrc
The null audio source, return unprocessed audio frames. It is mainly useful as a template and to be employed in analysis / debugging tools, or as the source for filters which ignore the input data (for example the sox synth filter).

This source accepts the following options:
channel_layout, cl

Specifies the channel layout, and can be either an integer or a string representing a channel layout. The default value of channel_layout is "stereo".

Check the channel_layout_map definition in libavutil/channel_layout.c for the mapping between strings and channel layout values.

sample_rate, r

Specifies the sample rate, and defaults to 44100.

nb_samples, n

Set the number of samples per requested frames.

duration, d

Set the duration of the sourced audio. See the Time duration section in the ffmpeg-utils(1) manual for the accepted syntax.

If not specified, or the expressed duration is negative, the audio is supposed to be generated forever.

Examples

Set the sample rate to 48000 Hz and the channel layout to AV_CH_LAYOUT_MONO.

anullsrc=r=48000:cl=4

Do the same operation with a more obvious syntax:

anullsrc=r=48000:cl=mono

All the parameters need to be explicitly defined.

flite
Synthesize a voice utterance using the libflite library.

To enable compilation of this filter you need to configure FFmpeg with "--enable-libflite".

Note that versions of the flite library prior to 2.0 are not thread-safe.

The filter accepts the following options:
list_voices

If set to 1, list the names of the available voices and exit immediately. Default value is 0.

nb_samples, n

Set the maximum number of samples per frame. Default value is 512.

textfile

Set the filename containing the text to speak.

text

Set the text to speak.

voice, v

Set the voice to use for the speech synthesis. Default value is "kal". See also the list_voices option.

Examples

Read from file speech.txt, and synthesize the text using the standard flite voice:

flite=textfile=speech.txt

Read the specified text selecting the "slt" voice:

flite=text='So fare thee well, poor devil of a Sub-Sub, whose commentator I am':voice=slt

Input text to ffmpeg:

ffmpeg -f lavfi -i flite=text='So fare thee well, poor devil of a Sub-Sub, whose commentator I am':voice=slt

Make ffplay speak the specified text, using "flite" and the "lavfi" device:

ffplay -f lavfi flite=text='No more be grieved for which that thou hast done.'

For more information about libflite, check: <http://www.festvox.org/flite/>

anoisesrc
Generate a noise audio signal.

The filter accepts the following options:
sample_rate, r

Specify the sample rate. Default value is 48000 Hz.

amplitude, a

Specify the amplitude (0.0 - 1.0) of the generated audio stream. Default value is 1.0.

duration, d

Specify the duration of the generated audio stream. Not specifying this option results in noise with an infinite length.

color, colour, c

Specify the color of noise. Available noise colors are white, pink, brown, blue, violet and velvet. Default color is white.

seed, s

Specify a value used to seed the PRNG.

nb_samples, n

Set the number of samples per each output frame, default is 1024.

density

Set the density (0.0 - 1.0) for the velvet noise generator, default is 0.05.

Examples

Generate 60 seconds of pink noise, with a 44.1 kHz sampling rate and an amplitude of 0.5:

anoisesrc=d=60:c=pink:r=44100:a=0.5

hilbert
Generate odd-tap Hilbert transform FIR coefficients.

The resulting stream can be used with afir filter for phase-shifting the signal by 90 degrees.

This is used in many matrix coding schemes and for analytic signal generation. The process is often written as a multiplication by i (or j), the imaginary unit.

The filter accepts the following options:
sample_rate, s

Set sample rate, default is 44100.

taps, t

Set length of FIR filter, default is 22051.

nb_samples, n

Set number of samples per each frame.

win_func, w

Set window function to be used when generating FIR coefficients.

sinc
Generate a sinc kaiser-windowed low-pass, high-pass, band-pass, or band-reject FIR coefficients.

The resulting stream can be used with afir filter for filtering the audio signal.

The filter accepts the following options:
sample_rate, r

Set sample rate, default is 44100.

nb_samples, n

Set number of samples per each frame. Default is 1024.

hp

Set high-pass frequency. Default is 0.

lp

Set low-pass frequency. Default is 0. If high-pass frequency is lower than low-pass frequency and low-pass frequency is higher than 0 then filter will create band-pass filter coefficients, otherwise band-reject filter coefficients.

phase

Set filter phase response. Default is 50. Allowed range is from 0 to 100.

beta

Set Kaiser window beta.

att

Set stop-band attenuation. Default is 120dB, allowed range is from 40 to 180 dB.

round

Enable rounding, by default is disabled.

hptaps

Set number of taps for high-pass filter.

lptaps

Set number of taps for low-pass filter.

sine
Generate an audio signal made of a sine wave with amplitude 1/8.

The audio signal is bit-exact.

The filter accepts the following options:
frequency, f

Set the carrier frequency. Default is 440 Hz.

beep_factor, b

Enable a periodic beep every second with frequency beep_factor times the carrier frequency. Default is 0, meaning the beep is disabled.

sample_rate, r

Specify the sample rate, default is 44100.

duration, d

Specify the duration of the generated audio stream.

samples_per_frame

Set the number of samples per output frame.

The expression can contain the following constants:

n

The (sequential) number of the output audio frame, starting from 0.

pts

The PTS (Presentation TimeStamp) of the output audio frame, expressed in TB units.

t

The PTS of the output audio frame, expressed in seconds.

TB

The timebase of the output audio frames.

Default is 1024.

Examples

Generate a simple 440 Hz sine wave:

sine

Generate a 220 Hz sine wave with a 880 Hz beep each second, for 5 seconds:

sine=220:4:d=5
sine=f=220:b=4:d=5
sine=frequency=220:beep_factor=4:duration=5

Generate a 1 kHz sine wave following "1602,1601,1602,1601,1602" NTSC pattern:

sine=1000:samples_per_frame='st(0,mod(n,5)); 1602-not(not(eq(ld(0),1)+eq(ld(0),3)))'

AUDIO SINKS

Below is a description of the currently available audio sinks.

abuffersink
Buffer audio frames, and make them available to the end of filter chain.

This sink is mainly intended for programmatic use, in particular through the interface defined in libavfilter/buffersink.h or the options system.

It accepts a pointer to an AVABufferSinkContext structure, which defines the incoming buffers’ formats, to be passed as the opaque parameter to "avfilter_init_filter" for initialization.

anullsink
Null audio sink; do absolutely nothing with the input audio. It is mainly useful as a template and for use in analysis / debugging tools.

VIDEO FILTERS

When you configure your FFmpeg build, you can disable any of the existing filters using "--disable-filters". The configure output will show the video filters included in your build.

Below is a description of the currently available video filters.

addroi
Mark a region of interest in a video frame.

The frame data is passed through unchanged, but metadata is attached to the frame indicating regions of interest which can affect the behaviour of later encoding. Multiple regions can be marked by applying the filter multiple times.

x

Region distance in pixels from the left edge of the frame.

y

Region distance in pixels from the top edge of the frame.

w

Region width in pixels.

h

Region height in pixels.

The parameters x, y, w and h are expressions, and may contain the following variables:

iw

Width of the input frame.

ih

Height of the input frame.

qoffset

Quantisation offset to apply within the region.

This must be a real value in the range -1 to +1. A value of zero indicates no quality change. A negative value asks for better quality (less quantisation), while a positive value asks for worse quality (greater quantisation).

The range is calibrated so that the extreme values indicate the largest possible offset - if the rest of the frame is encoded with the worst possible quality, an offset of -1 indicates that this region should be encoded with the best possible quality anyway. Intermediate values are then interpolated in some codec-dependent way.

For example, in 10-bit H.264 the quantisation parameter varies between -12 and 51. A typical qoffset value of -1/10 therefore indicates that this region should be encoded with a QP around one-tenth of the full range better than the rest of the frame. So, if most of the frame were to be encoded with a QP of around 30, this region would get a QP of around 24 (an offset of approximately -1/10 * (51 - -12) = -6.3). An extreme value of -1 would indicate that this region should be encoded with the best possible quality regardless of the treatment of the rest of the frame - that is, should be encoded at a QP of -12.

clear

If set to true, remove any existing regions of interest marked on the frame before adding the new one.

Examples

Mark the centre quarter of the frame as interesting.

addroi=iw/4:ih/4:iw/2:ih/2:-1/10

Mark the 100-pixel-wide region on the left edge of the frame as very uninteresting (to be encoded at much lower quality than the rest of the frame).

addroi=0:0:100:ih:+1/5

alphaextract
Extract the alpha component from the input as a grayscale video. This is especially useful with the alphamerge filter.

alphamerge
Add or replace the alpha component of the primary input with the grayscale value of a second input. This is intended for use with alphaextract to allow the transmission or storage of frame sequences that have alpha in a format that doesn’t support an alpha channel.

For example, to reconstruct full frames from a normal YUV-encoded video and a separate video created with alphaextract, you might use:

movie=in_alpha.mkv [alpha]; [in][alpha] alphamerge [out]

amplify
Amplify differences between current pixel and pixels of adjacent frames in same pixel location.

This filter accepts the following options:
radius

Set frame radius. Default is 2. Allowed range is from 1 to 63. For example radius of 3 will instruct filter to calculate average of 7 frames.

factor

Set factor to amplify difference. Default is 2. Allowed range is from 0 to 65535.

threshold

Set threshold for difference amplification. Any difference greater or equal to this value will not alter source pixel. Default is 10. Allowed range is from 0 to 65535.

tolerance

Set tolerance for difference amplification. Any difference lower to this value will not alter source pixel. Default is 0. Allowed range is from 0 to 65535.

low

Set lower limit for changing source pixel. Default is 65535. Allowed range is from 0 to 65535. This option controls maximum possible value that will decrease source pixel value.

high

Set high limit for changing source pixel. Default is 65535. Allowed range is from 0 to 65535. This option controls maximum possible value that will increase source pixel value.

planes

Set which planes to filter. Default is all. Allowed range is from 0 to 15.

Commands

This filter supports the following commands that corresponds to option of same name:
factor
threshold
tolerance

low

high
planes

ass
Same as the subtitles filter, except that it doesn’t require libavcodec and libavformat to work. On the other hand, it is limited to ASS (Advanced Substation Alpha) subtitles files.

This filter accepts the following option in addition to the common options from the subtitles filter:
shaping

Set the shaping engine

Available values are:
auto

The default libass shaping engine, which is the best available.

simple

Fast, font-agnostic shaper that can do only substitutions

complex

Slower shaper using OpenType for substitutions and positioning

The default is "auto".

atadenoise
Apply an Adaptive Temporal Averaging Denoiser to the video input.

The filter accepts the following options:

0a

Set threshold A for 1st plane. Default is 0.02. Valid range is 0 to 0.3.

0b

Set threshold B for 1st plane. Default is 0.04. Valid range is 0 to 5.

1a

Set threshold A for 2nd plane. Default is 0.02. Valid range is 0 to 0.3.

1b

Set threshold B for 2nd plane. Default is 0.04. Valid range is 0 to 5.

2a

Set threshold A for 3rd plane. Default is 0.02. Valid range is 0 to 0.3.

2b

Set threshold B for 3rd plane. Default is 0.04. Valid range is 0 to 5.

Threshold A is designed to react on abrupt changes in the input signal and threshold B is designed to react on continuous changes in the input signal.

s

Set number of frames filter will use for averaging. Default is 9. Must be odd number in range [5, 129].

p

Set what planes of frame filter will use for averaging. Default is all.

a

Set what variant of algorithm filter will use for averaging. Default is "p" parallel. Alternatively can be set to "s" serial.

Parallel can be faster then serial, while other way around is never true. Parallel will abort early on first change being greater then thresholds, while serial will continue processing other side of frames if they are equal or below thresholds.

0s

1s

2s

Set sigma for 1st plane, 2nd plane or 3rd plane. Default is 32767. Valid range is from 0 to 32767. This options controls weight for each pixel in radius defined by size. Default value means every pixel have same weight. Setting this option to 0 effectively disables filtering.

Commands

This filter supports same commands as options except option "s". The command accepts the same syntax of the corresponding option.

avgblur
Apply average blur filter.

The filter accepts the following options:
sizeX

Set horizontal radius size.

planes

Set which planes to filter. By default all planes are filtered.

sizeY

Set vertical radius size, if zero it will be same as "sizeX". Default is 0.

Commands

This filter supports same commands as options. The command accepts the same syntax of the corresponding option.

If the specified expression is not valid, it is kept at its current value.

backgroundkey
Turns a static background into transparency.

The filter accepts the following option:
threshold

Threshold for scene change detection.

similarity

Similarity percentage with the background.

blend

Set the blend amount for pixels that are not similar.

Commands

This filter supports the all above options as commands.

bbox
Compute the bounding box for the non-black pixels in the input frame luma plane.

This filter computes the bounding box containing all the pixels with a luma value greater than the minimum allowed value. The parameters describing the bounding box are printed on the filter log.

The filter accepts the following option:
min_val

Set the minimal luma value. Default is 16.

Commands

This filter supports the all above options as commands.

bilateral
Apply bilateral filter, spatial smoothing while preserving edges.

The filter accepts the following options:
sigmaS

Set sigma of gaussian function to calculate spatial weight. Allowed range is 0 to 512. Default is 0.1.

sigmaR

Set sigma of gaussian function to calculate range weight. Allowed range is 0 to 1. Default is 0.1.

planes

Set planes to filter. Default is first only.

Commands

This filter supports the all above options as commands.

bilateral_cuda
CUDA accelerated bilateral filter, an edge preserving filter. This filter is mathematically accurate thanks to the use of GPU acceleration. For best output quality, use one to one chroma subsampling, i.e. yuv444p format.

The filter accepts the following options:
sigmaS

Set sigma of gaussian function to calculate spatial weight, also called sigma space. Allowed range is 0.1 to 512. Default is 0.1.

sigmaR

Set sigma of gaussian function to calculate color range weight, also called sigma color. Allowed range is 0.1 to 512. Default is 0.1.

window_size

Set window size of the bilateral function to determine the number of neighbours to loop on. If the number entered is even, one will be added automatically. Allowed range is 1 to 255. Default is 1.

Examples

Apply the bilateral filter on a video.

./ffmpeg -v verbose \
-hwaccel cuda -hwaccel_output_format cuda -i input.mp4 \
-init_hw_device cuda \
-filter_complex \
" \
[0:v]scale_cuda=format=yuv444p[scaled_video];
[scaled_video]bilateral_cuda=window_size=9:sigmaS=3.0:sigmaR=50.0" \
-an -sn -c:v h264_nvenc -cq 20 out.mp4

bitplanenoise
Show and measure bit plane noise.

The filter accepts the following options:
bitplane

Set which plane to analyze. Default is 1.

filter

Filter out noisy pixels from "bitplane" set above. Default is disabled.

blackdetect
Detect video intervals that are (almost) completely black. Can be useful to detect chapter transitions, commercials, or invalid recordings.

The filter outputs its detection analysis to both the log as well as frame metadata. If a black segment of at least the specified minimum duration is found, a line with the start and end timestamps as well as duration is printed to the log with level "info". In addition, a log line with level "debug" is printed per frame showing the black amount detected for that frame.

The filter also attaches metadata to the first frame of a black segment with key "lavfi.black_start" and to the first frame after the black segment ends with key "lavfi.black_end". The value is the frame’s timestamp. This metadata is added regardless of the minimum duration specified.

The filter accepts the following options:
black_min_duration, d

Set the minimum detected black duration expressed in seconds. It must be a non-negative floating point number.

Default value is 2.0.

picture_black_ratio_th, pic_th

Set the threshold for considering a picture "black". Express the minimum value for the ratio:

<nb_black_pixels> / <nb_pixels>

for which a picture is considered black. Default value is 0.98.

pixel_black_th, pix_th

Set the threshold for considering a pixel "black".

The threshold expresses the maximum pixel luma value for which a pixel is considered "black". The provided value is scaled according to the following equation:

<absolute_threshold> = <luma_minimum_value> + <pixel_black_th> * <luma_range_size>

luma_range_size and luma_minimum_value depend on the input video format, the range is [0-255] for YUV full-range formats and [16-235] for YUV non full-range formats.

Default value is 0.10.

The following example sets the maximum pixel threshold to the minimum value, and detects only black intervals of 2 or more seconds:

blackdetect=d=2:pix_th=0.00

blackframe
Detect frames that are (almost) completely black. Can be useful to detect chapter transitions or commercials. Output lines consist of the frame number of the detected frame, the percentage of blackness, the position in the file if known or -1 and the timestamp in seconds.

In order to display the output lines, you need to set the loglevel at least to the AV_LOG_INFO value.

This filter exports frame metadata "lavfi.blackframe.pblack". The value represents the percentage of pixels in the picture that are below the threshold value.

It accepts the following parameters:
amount

The percentage of the pixels that have to be below the threshold; it defaults to 98.

threshold, thresh

The threshold below which a pixel value is considered black; it defaults to 32.

blend
Blend two video frames into each other.

The "blend" filter takes two input streams and outputs one stream, the first input is the "top" layer and second input is "bottom" layer. By default, the output terminates when the longest input terminates.

The "tblend" (time blend) filter takes two consecutive frames from one single stream, and outputs the result obtained by blending the new frame on top of the old frame.

A description of the accepted options follows.
c0_mode
c1_mode
c2_mode
c3_mode
all_mode

Set blend mode for specific pixel component or all pixel components in case of all_mode. Default value is "normal".

Available values for component modes are:
addition

and

average
bleach
burn
darken
difference
divide
dodge
exclusion
extremity
freeze
geometric
glow
grainextract
grainmerge
hardlight
hardmix
hardoverlay
harmonic
heat
interpolate
lighten
linearlight
multiply
multiply128
negation
normal

or

overlay
phoenix
pinlight
reflect
screen
softdifference
softlight
stain
subtract
vividlight

xor

c0_opacity
c1_opacity
c2_opacity
c3_opacity
all_opacity

Set blend opacity for specific pixel component or all pixel components in case of all_opacity. Only used in combination with pixel component blend modes.

c0_expr
c1_expr
c2_expr
c3_expr
all_expr

Set blend expression for specific pixel component or all pixel components in case of all_expr. Note that related mode options will be ignored if those are set.

The expressions can use the following variables:

N

The sequential number of the filtered frame, starting from 0.

X

Y

the coordinates of the current sample

W

H

the width and height of currently filtered plane

SW

SH

Width and height scale for the plane being filtered. It is the ratio between the dimensions of the current plane to the luma plane, e.g. for a "yuv420p" frame, the values are "1,1" for the luma plane and "0.5,0.5" for the chroma planes.

T

Time of the current frame, expressed in seconds.

TOP, A

Value of pixel component at current location for first video frame (top layer).

BOTTOM, B

Value of pixel component at current location for second video frame (bottom layer).

The "blend" filter also supports the framesync options.

Examples

Apply transition from bottom layer to top layer in first 10 seconds:

blend=all_expr='A*(if(gte(T,10),1,T/10))+B*(1-(if(gte(T,10),1,T/10)))'

Apply linear horizontal transition from top layer to bottom layer:

blend=all_expr='A*(X/W)+B*(1-X/W)'

Apply 1x1 checkerboard effect:

blend=all_expr='if(eq(mod(X,2),mod(Y,2)),A,B)'

Apply uncover left effect:

blend=all_expr='if(gte(N*SW+X,W),A,B)'

Apply uncover down effect:

blend=all_expr='if(gte(Y-N*SH,0),A,B)'

Apply uncover up-left effect:

blend=all_expr='if(gte(T*SH*40+Y,H)*gte((T*40*SW+X)*W/H,W),A,B)'

Split diagonally video and shows top and bottom layer on each side:

blend=all_expr='if(gt(X,Y*(W/H)),A,B)'

Display differences between the current and the previous frame:

tblend=all_mode=grainextract

Commands

This filter supports same commands as options.

blockdetect
Determines blockiness of frames without altering the input frames.

Based on Remco Muijs and Ihor Kirenko: "A no-reference blocking artifact measure for adaptive video processing." 2005 13th European signal processing conference.

The filter accepts the following options:
period_min
period_max

Set minimum and maximum values for determining pixel grids (periods). Default values are [3,24].

planes

Set planes to filter. Default is first only.

Examples

Determine blockiness for the first plane and search for periods within [8,32]:

blockdetect=period_min=8:period_max=32:planes=1

blurdetect
Determines blurriness of frames without altering the input frames.

Based on Marziliano, Pina, et al. "A no-reference perceptual blur metric." Allows for a block-based abbreviation.

The filter accepts the following options:

low

high

Set low and high threshold values used by the Canny thresholding algorithm.

The high threshold selects the "strong" edge pixels, which are then connected through 8-connectivity with the "weak" edge pixels selected by the low threshold.

low and high threshold values must be chosen in the range [0,1], and low should be lesser or equal to high.

Default value for low is "20/255", and default value for high is "50/255".

radius

Define the radius to search around an edge pixel for local maxima.

block_pct

Determine blurriness only for the most significant blocks, given in percentage.

block_width

Determine blurriness for blocks of width block_width. If set to any value smaller 1, no blocks are used and the whole image is processed as one no matter of block_height.

block_height

Determine blurriness for blocks of height block_height. If set to any value smaller 1, no blocks are used and the whole image is processed as one no matter of block_width.

planes

Set planes to filter. Default is first only.

Examples

Determine blur for 80% of most significant 32x32 blocks:

blurdetect=block_width=32:block_height=32:block_pct=80

bm3d
Denoise frames using Block-Matching 3D algorithm.

The filter accepts the following options.
sigma

Set denoising strength. Default value is 1. Allowed range is from 0 to 999.9. The denoising algorithm is very sensitive to sigma, so adjust it according to the source.

block

Set local patch size. This sets dimensions in 2D.

bstep

Set sliding step for processing blocks. Default value is 4. Allowed range is from 1 to 64. Smaller values allows processing more reference blocks and is slower.

group

Set maximal number of similar blocks for 3rd dimension. Default value is 1. When set to 1, no block matching is done. Larger values allows more blocks in single group. Allowed range is from 1 to 256.

range

Set radius for search block matching. Default is 9. Allowed range is from 1 to INT32_MAX.

mstep

Set step between two search locations for block matching. Default is 1. Allowed range is from 1 to 64. Smaller is slower.

thmse

Set threshold of mean square error for block matching. Valid range is 0 to INT32_MAX.

hdthr

Set thresholding parameter for hard thresholding in 3D transformed domain. Larger values results in stronger hard-thresholding filtering in frequency domain.

estim

Set filtering estimation mode. Can be "basic" or "final". Default is "basic".

ref

If enabled, filter will use 2nd stream for block matching. Default is disabled for "basic" value of estim option, and always enabled if value of estim is "final".

planes

Set planes to filter. Default is all available except alpha.

Examples

Basic filtering with bm3d:

bm3d=sigma=3:block=4:bstep=2:group=1:estim=basic

Same as above, but filtering only luma:

bm3d=sigma=3:block=4:bstep=2:group=1:estim=basic:planes=1

Same as above, but with both estimation modes:

split[a][b],[a]bm3d=sigma=3:block=4:bstep=2:group=1:estim=basic[a],[b][a]bm3d=sigma=3:block=4:bstep=2:group=16:estim=final:ref=1

Same as above, but prefilter with nlmeans filter instead:

split[a][b],[a]nlmeans=s=3:r=7:p=3[a],[b][a]bm3d=sigma=3:block=4:bstep=2:group=16:estim=final:ref=1

boxblur
Apply a boxblur algorithm to the input video.

It accepts the following parameters:
luma_radius, lr
luma_power, lp
chroma_radius, cr
chroma_power, cp
alpha_radius, ar
alpha_power, ap

A description of the accepted options follows.
luma_radius, lr
chroma_radius, cr
alpha_radius, ar

Set an expression for the box radius in pixels used for blurring the corresponding input plane.

The radius value must be a non-negative number, and must not be greater than the value of the expression "min(w,h)/2" for the luma and alpha planes, and of "min(cw,ch)/2" for the chroma planes.

Default value for luma_radius is "2". If not specified, chroma_radius and alpha_radius default to the corresponding value set for luma_radius.

The expressions can contain the following constants:

w

h

The input width and height in pixels.

cw

ch

The input chroma image width and height in pixels.

hsub
vsub

The horizontal and vertical chroma subsample values. For example, for the pixel format "yuv422p", hsub is 2 and vsub is 1.

luma_power, lp
chroma_power, cp
alpha_power, ap

Specify how many times the boxblur filter is applied to the corresponding plane.

Default value for luma_power is 2. If not specified, chroma_power and alpha_power default to the corresponding value set for luma_power.

A value of 0 will disable the effect.

Examples

Apply a boxblur filter with the luma, chroma, and alpha radii set to 2:

boxblur=luma_radius=2:luma_power=1
boxblur=2:1

Set the luma radius to 2, and alpha and chroma radius to 0:

boxblur=2:1:cr=0:ar=0

Set the luma and chroma radii to a fraction of the video dimension:

boxblur=luma_radius=min(h\,w)/10:luma_power=1:chroma_radius=min(cw\,ch)/10:chroma_power=1

bwdif
Deinterlace the input video ("bwdif" stands for "Bob Weaver Deinterlacing Filter").

Motion adaptive deinterlacing based on yadif with the use of w3fdif and cubic interpolation algorithms. It accepts the following parameters:
mode

The interlacing mode to adopt. It accepts one of the following values:
0, send_frame

Output one frame for each frame.

1, send_field

Output one frame for each field.

The default value is "send_field".

parity

The picture field parity assumed for the input interlaced video. It accepts one of the following values:
0, tff

Assume the top field is first.

1, bff

Assume the bottom field is first.

-1, auto

Enable automatic detection of field parity.

The default value is "auto". If the interlacing is unknown or the decoder does not export this information, top field first will be assumed.

deint

Specify which frames to deinterlace. Accepts one of the following values:
0, all

Deinterlace all frames.

1, interlaced

Only deinterlace frames marked as interlaced.

The default value is "all".

bwdif_cuda
Deinterlace the input video using the bwdif algorithm, but implemented in CUDA so that it can work as part of a GPU accelerated pipeline with nvdec and/or nvenc.

It accepts the following parameters:
mode

The interlacing mode to adopt. It accepts one of the following values:
0, send_frame

Output one frame for each frame.

1, send_field

Output one frame for each field.

The default value is "send_field".

parity

The picture field parity assumed for the input interlaced video. It accepts one of the following values:
0, tff

Assume the top field is first.

1, bff

Assume the bottom field is first.

-1, auto

Enable automatic detection of field parity.

The default value is "auto". If the interlacing is unknown or the decoder does not export this information, top field first will be assumed.

deint

Specify which frames to deinterlace. Accepts one of the following values:
0, all

Deinterlace all frames.

1, interlaced

Only deinterlace frames marked as interlaced.

The default value is "all".

ccrepack
Repack CEA-708 closed captioning side data

This filter fixes various issues seen with commerical encoders related to upstream malformed CEA-708 payloads, specifically incorrect number of tuples (wrong cc_count for the target FPS), and incorrect ordering of tuples (i.e. the CEA-608 tuples are not at the first entries in the payload).

cas
Apply Contrast Adaptive Sharpen filter to video stream.

The filter accepts the following options:
strength

Set the sharpening strength. Default value is 0.

planes

Set planes to filter. Default value is to filter all planes except alpha plane.

Commands

This filter supports same commands as options.

chromahold
Remove all color information for all colors except for certain one.

The filter accepts the following options:
color

The color which will not be replaced with neutral chroma.

similarity

Similarity percentage with the above color. 0.01 matches only the exact key color, while 1.0 matches everything.

blend

Blend percentage. 0.0 makes pixels either fully gray, or not gray at all. Higher values result in more preserved color.

yuv

Signals that the color passed is already in YUV instead of RGB.

Literal colors like "green" or "red" don’t make sense with this enabled anymore. This can be used to pass exact YUV values as hexadecimal numbers.

Commands

This filter supports same commands as options. The command accepts the same syntax of the corresponding option.

If the specified expression is not valid, it is kept at its current value.

chromakey
YUV colorspace color/chroma keying.

The filter accepts the following options:
color

The color which will be replaced with transparency.

similarity

Similarity percentage with the key color.

0.01 matches only the exact key color, while 1.0 matches everything.

blend

Blend percentage.

0.0 makes pixels either fully transparent, or not transparent at all.

Higher values result in semi-transparent pixels, with a higher transparency the more similar the pixels color is to the key color.

yuv

Signals that the color passed is already in YUV instead of RGB.

Literal colors like "green" or "red" don’t make sense with this enabled anymore. This can be used to pass exact YUV values as hexadecimal numbers.

Commands

This filter supports same commands as options. The command accepts the same syntax of the corresponding option.

If the specified expression is not valid, it is kept at its current value.

Examples

Make every green pixel in the input image transparent:

ffmpeg -i input.png -vf chromakey=green out.png

Overlay a greenscreen-video on top of a static black background.

ffmpeg -f lavfi -i color=c=black:s=1280x720 -i video.mp4 -shortest -filter_complex "[1:v]chromakey=0x70de77:0.1:0.2[ckout];[0:v][ckout]overlay[out]" -map "[out]" output.mkv

chromakey_cuda
CUDA accelerated YUV colorspace color/chroma keying.

This filter works like normal chromakey filter but operates on CUDA frames. for more details and parameters see chromakey.

Examples

Make all the green pixels in the input video transparent and use it as an overlay for another video:

./ffmpeg \
-hwaccel cuda -hwaccel_output_format cuda -i input_green.mp4 \
-hwaccel cuda -hwaccel_output_format cuda -i base_video.mp4 \
-init_hw_device cuda \
-filter_complex \
" \
[0:v]chromakey_cuda=0x25302D:0.1:0.12:1[overlay_video]; \
[1:v]scale_cuda=format=yuv420p[base]; \
[base][overlay_video]overlay_cuda" \
-an -sn -c:v h264_nvenc -cq 20 output.mp4

Process two software sources, explicitly uploading the frames:

./ffmpeg -init_hw_device cuda=cuda -filter_hw_device cuda \
-f lavfi -i color=size=800x600:color=white,format=yuv420p \
-f lavfi -i yuvtestsrc=size=200x200,format=yuv420p \
-filter_complex \
" \
[0]hwupload[under]; \
[1]hwupload,chromakey_cuda=green:0.1:0.12[over]; \
[under][over]overlay_cuda" \
-c:v hevc_nvenc -cq 18 -preset slow output.mp4

chromanr
Reduce chrominance noise.

The filter accepts the following options:
thres

Set threshold for averaging chrominance values. Sum of absolute difference of Y, U and V pixel components of current pixel and neighbour pixels lower than this threshold will be used in averaging. Luma component is left unchanged and is copied to output. Default value is 30. Allowed range is from 1 to 200.

sizew

Set horizontal radius of rectangle used for averaging. Allowed range is from 1 to 100. Default value is 5.

sizeh

Set vertical radius of rectangle used for averaging. Allowed range is from 1 to 100. Default value is 5.

stepw

Set horizontal step when averaging. Default value is 1. Allowed range is from 1 to 50. Mostly useful to speed-up filtering.

steph

Set vertical step when averaging. Default value is 1. Allowed range is from 1 to 50. Mostly useful to speed-up filtering.

threy

Set Y threshold for averaging chrominance values. Set finer control for max allowed difference between Y components of current pixel and neigbour pixels. Default value is 200. Allowed range is from 1 to 200.

threu

Set U threshold for averaging chrominance values. Set finer control for max allowed difference between U components of current pixel and neigbour pixels. Default value is 200. Allowed range is from 1 to 200.

threv

Set V threshold for averaging chrominance values. Set finer control for max allowed difference between V components of current pixel and neigbour pixels. Default value is 200. Allowed range is from 1 to 200.

distance

Set distance type used in calculations.
manhattan

Absolute difference.

euclidean

Difference squared.

Default distance type is manhattan.

Commands

This filter supports same commands as options. The command accepts the same syntax of the corresponding option.

chromashift
Shift chroma pixels horizontally and/or vertically.

The filter accepts the following options:

cbh

Set amount to shift chroma-blue horizontally.

cbv

Set amount to shift chroma-blue vertically.

crh

Set amount to shift chroma-red horizontally.

crv

Set amount to shift chroma-red vertically.

edge

Set edge mode, can be smear, default, or warp.

Commands

This filter supports the all above options as commands.

ciescope
Display CIE color diagram with pixels overlaid onto it.

The filter accepts the following options:
system

Set color system.
ntsc, 470m
ebu, 470bg
smpte
240m
apple
widergb
cie1931
rec709, hdtv
uhdtv, rec2020
dcip3

cie

Set CIE system.

xyy

ucs

luv

gamuts

Set what gamuts to draw.

See "system" option for available values.

size, s

Set ciescope size, by default set to 512.

intensity, i

Set intensity used to map input pixel values to CIE diagram.

contrast

Set contrast used to draw tongue colors that are out of active color system gamut.

corrgamma

Correct gamma displayed on scope, by default enabled.

showwhite

Show white point on CIE diagram, by default disabled.

gamma

Set input gamma. Used only with XYZ input color space.

fill

Fill with CIE colors. By default is enabled.

codecview
Visualize information exported by some codecs.

Some codecs can export information through frames using side-data or other means. For example, some MPEG based codecs export motion vectors through the export_mvs flag in the codec flags2 option.

The filter accepts the following option:
block

Display block partition structure using the luma plane.

mv

Set motion vectors to visualize.

Available flags for mv are:

pf

forward predicted MVs of P-frames

bf

forward predicted MVs of B-frames

bb

backward predicted MVs of B-frames

qp

Display quantization parameters using the chroma planes.

mv_type, mvt

Set motion vectors type to visualize. Includes MVs from all frames unless specified by frame_type option.

Available flags for mv_type are:

fp

forward predicted MVs

bp

backward predicted MVs

frame_type, ft

Set frame type to visualize motion vectors of.

Available flags for frame_type are:

if

intra-coded frames (I-frames)

pf

predicted frames (P-frames)

bf

bi-directionally predicted frames (B-frames)

Examples

Visualize forward predicted MVs of all frames using ffplay:

ffplay -flags2 +export_mvs input.mp4 -vf codecview=mv_type=fp

Visualize multi-directionals MVs of P and B-Frames using ffplay:

ffplay -flags2 +export_mvs input.mp4 -vf codecview=mv=pf+bf+bb

colorbalance
Modify intensity of primary colors (red, green and blue) of input frames.

The filter allows an input frame to be adjusted in the shadows, midtones or highlights regions for the red-cyan, green-magenta or blue-yellow balance.

A positive adjustment value shifts the balance towards the primary color, a negative value towards the complementary color.

The filter accepts the following options:

rs

gs

bs

Adjust red, green and blue shadows (darkest pixels).

rm

gm

bm

Adjust red, green and blue midtones (medium pixels).

rh

gh

bh

Adjust red, green and blue highlights (brightest pixels).

Allowed ranges for options are "[-1.0, 1.0]". Defaults are 0.

pl

Preserve lightness when changing color balance. Default is disabled.

Examples

Add red color cast to shadows:

colorbalance=rs=.3

Commands

This filter supports the all above options as commands.

colorcontrast
Adjust color contrast between RGB components.

The filter accepts the following options:

rc

Set the red-cyan contrast. Defaults is 0.0. Allowed range is from -1.0 to 1.0.

gm

Set the green-magenta contrast. Defaults is 0.0. Allowed range is from -1.0 to 1.0.

by

Set the blue-yellow contrast. Defaults is 0.0. Allowed range is from -1.0 to 1.0.

rcw

gmw

byw

Set the weight of each "rc", "gm", "by" option value. Default value is 0.0. Allowed range is from 0.0 to 1.0. If all weights are 0.0 filtering is disabled.

pl

Set the amount of preserving lightness. Default value is 0.0. Allowed range is from 0.0 to 1.0.

Commands

This filter supports the all above options as commands.

colorcorrect
Adjust color white balance selectively for blacks and whites. This filter operates in YUV colorspace.

The filter accepts the following options:

rl

Set the red shadow spot. Allowed range is from -1.0 to 1.0. Default value is 0.

bl

Set the blue shadow spot. Allowed range is from -1.0 to 1.0. Default value is 0.

rh

Set the red highlight spot. Allowed range is from -1.0 to 1.0. Default value is 0.

bh

Set the blue highlight spot. Allowed range is from -1.0 to 1.0. Default value is 0.

saturation

Set the amount of saturation. Allowed range is from -3.0 to 3.0. Default value is 1.

analyze

If set to anything other than "manual" it will analyze every frame and use derived parameters for filtering output frame.

Possible values are:
manual
average
minmax
median

Default value is "manual".

Commands

This filter supports the all above options as commands.

colorchannelmixer
Adjust video input frames by re-mixing color channels.

This filter modifies a color channel by adding the values associated to the other channels of the same pixels. For example if the value to modify is red, the output value will be:

<red>=<red>*<rr> + <blue>*<rb> + <green>*<rg> + <alpha>*<ra>

The filter accepts the following options:

rr

rg

rb

ra

Adjust contribution of input red, green, blue and alpha channels for output red channel. Default is 1 for rr, and 0 for rg, rb and ra.

gr

gg

gb

ga

Adjust contribution of input red, green, blue and alpha channels for output green channel. Default is 1 for gg, and 0 for gr, gb and ga.

br

bg

bb

ba

Adjust contribution of input red, green, blue and alpha channels for output blue channel. Default is 1 for bb, and 0 for br, bg and ba.

ar

ag

ab

aa

Adjust contribution of input red, green, blue and alpha channels for output alpha channel. Default is 1 for aa, and 0 for ar, ag and ab.

Allowed ranges for options are "[-2.0, 2.0]".

pc

Set preserve color mode. The accepted values are:

none

Disable color preserving, this is default.

lum

Preserve luminance.

max

Preserve max value of RGB triplet.

avg

Preserve average value of RGB triplet.

sum

Preserve sum value of RGB triplet.

nrm

Preserve normalized value of RGB triplet.

pwr

Preserve power value of RGB triplet.

pa

Set the preserve color amount when changing colors. Allowed range is from "[0.0, 1.0]". Default is 0.0, thus disabled.

Examples

Convert source to grayscale:

colorchannelmixer=.3:.4:.3:0:.3:.4:.3:0:.3:.4:.3

Simulate sepia tones:

colorchannelmixer=.393:.769:.189:0:.349:.686:.168:0:.272:.534:.131

Commands

This filter supports the all above options as commands.

colorize
Overlay a solid color on the video stream.

The filter accepts the following options:

hue

Set the color hue. Allowed range is from 0 to 360. Default value is 0.

saturation

Set the color saturation. Allowed range is from 0 to 1. Default value is 0.5.

lightness

Set the color lightness. Allowed range is from 0 to 1. Default value is 0.5.

mix

Set the mix of source lightness. By default is set to 1.0. Allowed range is from 0.0 to 1.0.

Commands

This filter supports the all above options as commands.

colorkey
RGB colorspace color keying. This filter operates on 8-bit RGB format frames by setting the alpha component of each pixel which falls within the similarity radius of the key color to 0. The alpha value for pixels outside the similarity radius depends on the value of the blend option.

The filter accepts the following options:
color

Set the color for which alpha will be set to 0 (full transparency). See "Color" section in the ffmpeg-utils manual. Default is "black".

similarity

Set the radius from the key color within which other colors also have full transparency. The computed distance is related to the unit fractional distance in 3D space between the RGB values of the key color and the pixel’s color. Range is 0.01 to 1.0. 0.01 matches within a very small radius around the exact key color, while 1.0 matches everything. Default is 0.01.

blend

Set how the alpha value for pixels that fall outside the similarity radius is computed. 0.0 makes pixels either fully transparent or fully opaque. Higher values result in semi-transparent pixels, with greater transparency the more similar the pixel color is to the key color. Range is 0.0 to 1.0. Default is 0.0.

Examples

Make every green pixel in the input image transparent:

ffmpeg -i input.png -vf colorkey=green out.png

Overlay a greenscreen-video on top of a static background image.

ffmpeg -i background.png -i video.mp4 -filter_complex "[1:v]colorkey=0x3BBD1E:0.3:0.2[ckout];[0:v][ckout]overlay[out]" -map "[out]" output.flv

Commands

This filter supports same commands as options. The command accepts the same syntax of the corresponding option.

If the specified expression is not valid, it is kept at its current value.

colorhold
Remove all color information for all RGB colors except for certain one.

The filter accepts the following options:
color

The color which will not be replaced with neutral gray.

similarity

Similarity percentage with the above color. 0.01 matches only the exact key color, while 1.0 matches everything.

blend

Blend percentage. 0.0 makes pixels fully gray. Higher values result in more preserved color.

Commands

This filter supports same commands as options. The command accepts the same syntax of the corresponding option.

If the specified expression is not valid, it is kept at its current value.

colorlevels
Adjust video input frames using levels.

The filter accepts the following options:
rimin
gimin
bimin
aimin

Adjust red, green, blue and alpha input black point. Allowed ranges for options are "[-1.0, 1.0]". Defaults are 0.

rimax
gimax
bimax
aimax

Adjust red, green, blue and alpha input white point. Allowed ranges for options are "[-1.0, 1.0]". Defaults are 1.

Input levels are used to lighten highlights (bright tones), darken shadows (dark tones), change the balance of bright and dark tones.

romin
gomin
bomin
aomin

Adjust red, green, blue and alpha output black point. Allowed ranges for options are "[0, 1.0]". Defaults are 0.

romax
gomax
bomax
aomax

Adjust red, green, blue and alpha output white point. Allowed ranges for options are "[0, 1.0]". Defaults are 1.

Output levels allows manual selection of a constrained output level range.

preserve

Set preserve color mode. The accepted values are:
none

Disable color preserving, this is default.

lum

Preserve luminance.

max

Preserve max value of RGB triplet.

avg

Preserve average value of RGB triplet.

sum

Preserve sum value of RGB triplet.

nrm

Preserve normalized value of RGB triplet.

pwr

Preserve power value of RGB triplet.

Examples

Make video output darker:

colorlevels=rimin=0.058:gimin=0.058:bimin=0.058

Increase contrast:

colorlevels=rimin=0.039:gimin=0.039:bimin=0.039:rimax=0.96:gimax=0.96:bimax=0.96

Make video output lighter:

colorlevels=rimax=0.902:gimax=0.902:bimax=0.902

Increase brightness:

colorlevels=romin=0.5:gomin=0.5:bomin=0.5

Commands

This filter supports the all above options as commands.

colormap
Apply custom color maps to video stream.

This filter needs three input video streams. First stream is video stream that is going to be filtered out. Second and third video stream specify color patches for source color to target color mapping.

The filter accepts the following options:
patch_size

Set the source and target video stream patch size in pixels.

nb_patches

Set the max number of used patches from source and target video stream. Default value is number of patches available in additional video streams. Max allowed number of patches is 64.

type

Set the adjustments used for target colors. Can be "relative" or "absolute". Defaults is "absolute".

kernel

Set the kernel used to measure color differences between mapped colors.

The accepted values are:
euclidean
weuclidean

Default is "euclidean".

colormatrix
Convert color matrix.

The filter accepts the following options:

src

dst

Specify the source and destination color matrix. Both values must be specified.

The accepted values are:
bt709

BT.709

fcc

FCC

bt601

BT.601

bt470

BT.470

bt470bg

BT.470BG

smpte170m

SMPTE-170M

smpte240m

SMPTE-240M

bt2020

BT.2020

For example to convert from BT.601 to SMPTE-240M, use the command:

colormatrix=bt601:smpte240m

colorspace
Convert colorspace, transfer characteristics or color primaries. Input video needs to have an even size.

The filter accepts the following options:

all

Specify all color properties at once.

The accepted values are:
bt470m

BT.470M

bt470bg

BT.470BG

bt601-6-525

BT.601-6 525

bt601-6-625

BT.601-6 625

bt709

BT.709

smpte170m

SMPTE-170M

smpte240m

SMPTE-240M

bt2020

BT.2020

space

Specify output colorspace.

The accepted values are:
bt709

BT.709

fcc

FCC

bt470bg

BT.470BG or BT.601-6 625

smpte170m

SMPTE-170M or BT.601-6 525

smpte240m

SMPTE-240M

ycgco

YCgCo

bt2020ncl

BT.2020 with non-constant luminance

trc

Specify output transfer characteristics.

The accepted values are:
bt709

BT.709

bt470m

BT.470M

bt470bg

BT.470BG

gamma22

Constant gamma of 2.2

gamma28

Constant gamma of 2.8

smpte170m

SMPTE-170M, BT.601-6 625 or BT.601-6 525

smpte240m

SMPTE-240M

srgb

SRGB

iec61966-2-1

iec61966-2-1

iec61966-2-4

iec61966-2-4

xvycc

xvycc

bt2020-10

BT.2020 for 10-bits content

bt2020-12

BT.2020 for 12-bits content

primaries

Specify output color primaries.

The accepted values are:
bt709

BT.709

bt470m

BT.470M

bt470bg

BT.470BG or BT.601-6 625

smpte170m

SMPTE-170M or BT.601-6 525

smpte240m

SMPTE-240M

film

film

smpte431

SMPTE-431

smpte432

SMPTE-432

bt2020

BT.2020

jedec-p22

JEDEC P22 phosphors

range

Specify output color range.

The accepted values are:

tv

TV (restricted) range

mpeg

MPEG (restricted) range

pc

PC (full) range

jpeg

JPEG (full) range

format

Specify output color format.

The accepted values are:
yuv420p

YUV 4:2:0 planar 8-bits

yuv420p10

YUV 4:2:0 planar 10-bits

yuv420p12

YUV 4:2:0 planar 12-bits

yuv422p

YUV 4:2:2 planar 8-bits

yuv422p10

YUV 4:2:2 planar 10-bits

yuv422p12

YUV 4:2:2 planar 12-bits

yuv444p

YUV 4:4:4 planar 8-bits

yuv444p10

YUV 4:4:4 planar 10-bits

yuv444p12

YUV 4:4:4 planar 12-bits

fast

Do a fast conversion, which skips gamma/primary correction. This will take significantly less CPU, but will be mathematically incorrect. To get output compatible with that produced by the colormatrix filter, use fast=1.

dither

Specify dithering mode.

The accepted values are:
none

No dithering

fsb

Floyd-Steinberg dithering

wpadapt

Whitepoint adaptation mode.

The accepted values are:
bradford

Bradford whitepoint adaptation

vonkries

von Kries whitepoint adaptation

identity

identity whitepoint adaptation (i.e. no whitepoint adaptation)

iall

Override all input properties at once. Same accepted values as all.

ispace

Override input colorspace. Same accepted values as space.

iprimaries

Override input color primaries. Same accepted values as primaries.

itrc

Override input transfer characteristics. Same accepted values as trc.

irange

Override input color range. Same accepted values as range.

The filter converts the transfer characteristics, color space and color primaries to the specified user values. The output value, if not specified, is set to a default value based on the "all" property. If that property is also not specified, the filter will log an error. The output color range and format default to the same value as the input color range and format. The input transfer characteristics, color space, color primaries and color range should be set on the input data. If any of these are missing, the filter will log an error and no conversion will take place.

For example to convert the input to SMPTE-240M, use the command:

colorspace=smpte240m

colorspace_cuda
CUDA accelerated implementation of the colorspace filter.

It is by no means feature complete compared to the software colorspace filter, and at the current time only supports color range conversion between jpeg/full and mpeg/limited range.

The filter accepts the following options:
range

Specify output color range.

The accepted values are:

tv

TV (restricted) range

mpeg

MPEG (restricted) range

pc

PC (full) range

jpeg

JPEG (full) range

colortemperature
Adjust color temperature in video to simulate variations in ambient color temperature.

The filter accepts the following options:
temperature

Set the temperature in Kelvin. Allowed range is from 1000 to 40000. Default value is 6500 K.

mix

Set mixing with filtered output. Allowed range is from 0 to 1. Default value is 1.

pl

Set the amount of preserving lightness. Allowed range is from 0 to 1. Default value is 0.

Commands

This filter supports same commands as options.

convolution
Apply convolution of 3x3, 5x5, 7x7 or horizontal/vertical up to 49 elements.

The filter accepts the following options:

0m

1m

2m

3m

Set matrix for each plane. Matrix is sequence of 9, 25 or 49 signed integers in square mode, and from 1 to 49 odd number of signed integers in row mode.

0rdiv
1rdiv
2rdiv
3rdiv

Set multiplier for calculated value for each plane. If unset or 0, it will be sum of all matrix elements.

0bias
1bias
2bias
3bias

Set bias for each plane. This value is added to the result of the multiplication. Useful for making the overall image brighter or darker. Default is 0.0.

0mode
1mode
2mode
3mode

Set matrix mode for each plane. Can be square, row or column. Default is square.

Commands

This filter supports the all above options as commands.

Examples

Apply sharpen:

convolution="0 -1 0 -1 5 -1 0 -1 0:0 -1 0 -1 5 -1 0 -1 0:0 -1 0 -1 5 -1 0 -1 0:0 -1 0 -1 5 -1 0 -1 0"

Apply blur:

convolution="1 1 1 1 1 1 1 1 1:1 1 1 1 1 1 1 1 1:1 1 1 1 1 1 1 1 1:1 1 1 1 1 1 1 1 1:1/9:1/9:1/9:1/9"

Apply edge enhance:

convolution="0 0 0 -1 1 0 0 0 0:0 0 0 -1 1 0 0 0 0:0 0 0 -1 1 0 0 0 0:0 0 0 -1 1 0 0 0 0:5:1:1:1:0:128:128:128"

Apply edge detect:

convolution="0 1 0 1 -4 1 0 1 0:0 1 0 1 -4 1 0 1 0:0 1 0 1 -4 1 0 1 0:0 1 0 1 -4 1 0 1 0:5:5:5:1:0:128:128:128"

Apply laplacian edge detector which includes diagonals:

convolution="1 1 1 1 -8 1 1 1 1:1 1 1 1 -8 1 1 1 1:1 1 1 1 -8 1 1 1 1:1 1 1 1 -8 1 1 1 1:5:5:5:1:0:128:128:0"

Apply emboss:

convolution="-2 -1 0 -1 1 1 0 1 2:-2 -1 0 -1 1 1 0 1 2:-2 -1 0 -1 1 1 0 1 2:-2 -1 0 -1 1 1 0 1 2"

convolve
Apply 2D convolution of video stream in frequency domain using second stream as impulse.

The filter accepts the following options:
planes

Set which planes to process.

impulse

Set which impulse video frames will be processed, can be first or all. Default is all.

The "convolve" filter also supports the framesync options.

copy
Copy the input video source unchanged to the output. This is mainly useful for testing purposes.

coreimage
Video filtering on GPU using Apple’s CoreImage API on OSX.

Hardware acceleration is based on an OpenGL context. Usually, this means it is processed by video hardware. However, software-based OpenGL implementations exist which means there is no guarantee for hardware processing. It depends on the respective OSX.

There are many filters and image generators provided by Apple that come with a large variety of options. The filter has to be referenced by its name along with its options.

The coreimage filter accepts the following options:
list_filters

List all available filters and generators along with all their respective options as well as possible minimum and maximum values along with the default values.

list_filters=true

filter

Specify all filters by their respective name and options. Use list_filters to determine all valid filter names and options. Numerical options are specified by a float value and are automatically clamped to their respective value range. Vector and color options have to be specified by a list of space separated float values. Character escaping has to be done. A special option name "default" is available to use default options for a filter.

It is required to specify either "default" or at least one of the filter options. All omitted options are used with their default values. The syntax of the filter string is as follows:

filter=<NAME>@<OPTION>=<VALUE>[@<OPTION>=<VALUE>][@...][#<NAME>@<OPTION>=<VALUE>[@<OPTION>=<VALUE>][@...]][#...]

output_rect

Specify a rectangle where the output of the filter chain is copied into the input image. It is given by a list of space separated float values:

output_rect=x\ y\ width\ height

If not given, the output rectangle equals the dimensions of the input image. The output rectangle is automatically cropped at the borders of the input image. Negative values are valid for each component.

output_rect=25\ 25\ 100\ 100

Several filters can be chained for successive processing without GPU-HOST transfers allowing for fast processing of complex filter chains. Currently, only filters with zero (generators) or exactly one (filters) input image and one output image are supported. Also, transition filters are not yet usable as intended.

Some filters generate output images with additional padding depending on the respective filter kernel. The padding is automatically removed to ensure the filter output has the same size as the input image.

For image generators, the size of the output image is determined by the previous output image of the filter chain or the input image of the whole filterchain, respectively. The generators do not use the pixel information of this image to generate their output. However, the generated output is blended onto this image, resulting in partial or complete coverage of the output image.

The coreimagesrc video source can be used for generating input images which are directly fed into the filter chain. By using it, providing input images by another video source or an input video is not required.

Examples

List all filters available:

coreimage=list_filters=true

Use the CIBoxBlur filter with default options to blur an image:

coreimage=filter=CIBoxBlur@default

Use a filter chain with CISepiaTone at default values and CIVignetteEffect with its center at 100x100 and a radius of 50 pixels:

coreimage=filter=CIBoxBlur@default#CIVignetteEffect@inputCenter=100\ 100@inputRadius=50

Use nullsrc and CIQRCodeGenerator to create a QR code for the FFmpeg homepage, given as complete and escaped command-line for Apple’s standard bash shell:

ffmpeg -f lavfi -i nullsrc=s=100x100,coreimage=filter=CIQRCodeGenerator@inputMessage=https\\\\\://FFmpeg.org/@inputCorrectionLevel=H -frames:v 1 QRCode.png

corr
Obtain the correlation between two input videos.

This filter takes two input videos.

Both input videos must have the same resolution and pixel format for this filter to work correctly. Also it assumes that both inputs have the same number of frames, which are compared one by one.

The obtained per component, average, min and max correlation is printed through the logging system.

The filter stores the calculated correlation of each frame in frame metadata.

This filter also supports the framesync options.

In the below example the input file main.mpg being processed is compared with the reference file ref.mpg.

ffmpeg -i main.mpg -i ref.mpg -lavfi corr -f null -

cover_rect
Cover a rectangular object

It accepts the following options:
cover

Filepath of the optional cover image, needs to be in yuv420.

mode

Set covering mode.

It accepts the following values:
cover

cover it by the supplied image

blur

cover it by interpolating the surrounding pixels

Default value is blur.

Examples

Cover a rectangular object by the supplied image of a given video using ffmpeg:

ffmpeg -i file.ts -vf find_rect=newref.pgm,cover_rect=cover.jpg:mode=cover new.mkv

crop
Crop the input video to given dimensions.

It accepts the following parameters:
w, out_w

The width of the output video. It defaults to "iw". This expression is evaluated only once during the filter configuration, or when the w or out_w command is sent.

h, out_h

The height of the output video. It defaults to "ih". This expression is evaluated only once during the filter configuration, or when the h or out_h command is sent.

x

The horizontal position, in the input video, of the left edge of the output video. It defaults to "(in_w-out_w)/2". This expression is evaluated per-frame.

y

The vertical position, in the input video, of the top edge of the output video. It defaults to "(in_h-out_h)/2". This expression is evaluated per-frame.

keep_aspect

If set to 1 will force the output display aspect ratio to be the same of the input, by changing the output sample aspect ratio. It defaults to 0.

exact

Enable exact cropping. If enabled, subsampled videos will be cropped at exact width/height/x/y as specified and will not be rounded to nearest smaller value. It defaults to 0.

The out_w, out_h, x, y parameters are expressions containing the following constants:

x

y

The computed values for x and y. They are evaluated for each new frame.

in_w
in_h

The input width and height.

iw

ih

These are the same as in_w and in_h.

out_w
out_h

The output (cropped) width and height.

ow

oh

These are the same as out_w and out_h.

a

same as iw / ih

sar

input sample aspect ratio

dar

input display aspect ratio, it is the same as (iw / ih) * sar

hsub
vsub

horizontal and vertical chroma subsample values. For example for the pixel format "yuv422p" hsub is 2 and vsub is 1.

n

The number of the input frame, starting from 0.

pos

the position in the file of the input frame, NAN if unknown; deprecated, do not use

t

The timestamp expressed in seconds. It’s NAN if the input timestamp is unknown.

The expression for out_w may depend on the value of out_h, and the expression for out_h may depend on out_w, but they cannot depend on x and y, as x and y are evaluated after out_w and out_h.

The x and y parameters specify the expressions for the position of the top-left corner of the output (non-cropped) area. They are evaluated for each frame. If the evaluated value is not valid, it is approximated to the nearest valid value.

The expression for x may depend on y, and the expression for y may depend on x.

Examples

Crop area with size 100x100 at position (12,34).

crop=100:100:12:34

Using named options, the example above becomes:

crop=w=100:h=100:x=12:y=34

Crop the central input area with size 100x100:

crop=100:100

Crop the central input area with size 2/3 of the input video:

crop=2/3*in_w:2/3*in_h

Crop the input video central square:

crop=out_w=in_h
crop=in_h

Delimit the rectangle with the top-left corner placed at position 100:100 and the right-bottom corner corresponding to the right-bottom corner of the input image.

crop=in_w-100:in_h-100:100:100

Crop 10 pixels from the left and right borders, and 20 pixels from the top and bottom borders

crop=in_w-2*10:in_h-2*20

Keep only the bottom right quarter of the input image:

crop=in_w/2:in_h/2:in_w/2:in_h/2

Crop height for getting Greek harmony:

crop=in_w:1/PHI*in_w

Apply trembling effect:

crop=in_w/2:in_h/2:(in_w-out_w)/2+((in_w-out_w)/2)*sin(n/10):(in_h-out_h)/2 +((in_h-out_h)/2)*sin(n/7)

Apply erratic camera effect depending on timestamp:

crop=in_w/2:in_h/2:(in_w-out_w)/2+((in_w-out_w)/2)*sin(t*10):(in_h-out_h)/2 +((in_h-out_h)/2)*sin(t*13)

Set x depending on the value of y:

crop=in_w/2:in_h/2:y:10+10*sin(n/10)

Commands

This filter supports the following commands:
w, out_w
h, out_h

x

y

Set width/height of the output video and the horizontal/vertical position in the input video. The command accepts the same syntax of the corresponding option.

If the specified expression is not valid, it is kept at its current value.

cropdetect
Auto-detect the crop size.

It calculates the necessary cropping parameters and prints the recommended parameters via the logging system. The detected dimensions correspond to the non-black or video area of the input video according to mode.

It accepts the following parameters:
mode

Depending on mode crop detection is based on either the mere black value of surrounding pixels or a combination of motion vectors and edge pixels.
black

Detect black pixels surrounding the playing video. For fine control use option limit.

mvedges

Detect the playing video by the motion vectors inside the video and scanning for edge pixels typically forming the border of a playing video.

limit

Set higher black value threshold, which can be optionally specified from nothing (0) to everything (255 for 8-bit based formats). An intensity value greater to the set value is considered non-black. It defaults to 24. You can also specify a value between 0.0 and 1.0 which will be scaled depending on the bitdepth of the pixel format.

round

The value which the width/height should be divisible by. It defaults to 16. The offset is automatically adjusted to center the video. Use 2 to get only even dimensions (needed for 4:2:2 video). 16 is best when encoding to most video codecs.

skip

Set the number of initial frames for which evaluation is skipped. Default is 2. Range is 0 to INT_MAX.

reset_count, reset

Set the counter that determines after how many frames cropdetect will reset the previously detected largest video area and start over to detect the current optimal crop area. Default value is 0.

This can be useful when channel logos distort the video area. 0 indicates ’never reset’, and returns the largest area encountered during playback.

mv_threshold

Set motion in pixel units as threshold for motion detection. It defaults to 8.

low

high

Set low and high threshold values used by the Canny thresholding algorithm.

The high threshold selects the "strong" edge pixels, which are then connected through 8-connectivity with the "weak" edge pixels selected by the low threshold.

low and high threshold values must be chosen in the range [0,1], and low should be lesser or equal to high.

Default value for low is "5/255", and default value for high is "15/255".

Examples

Find video area surrounded by black borders:

ffmpeg -i file.mp4 -vf cropdetect,metadata=mode=print -f null -

Find an embedded video area, generate motion vectors beforehand:

ffmpeg -i file.mp4 -vf mestimate,cropdetect=mode=mvedges,metadata=mode=print -f null -

Find an embedded video area, use motion vectors from decoder:

ffmpeg -flags2 +export_mvs -i file.mp4 -vf cropdetect=mode=mvedges,metadata=mode=print -f null -

Commands

This filter supports the following commands:
limit

The command accepts the same syntax of the corresponding option. If the specified expression is not valid, it is kept at its current value.

cue
Delay video filtering until a given wallclock timestamp. The filter first passes on preroll amount of frames, then it buffers at most buffer amount of frames and waits for the cue. After reaching the cue it forwards the buffered frames and also any subsequent frames coming in its input.

The filter can be used synchronize the output of multiple ffmpeg processes for realtime output devices like decklink. By putting the delay in the filtering chain and pre-buffering frames the process can pass on data to output almost immediately after the target wallclock timestamp is reached.

Perfect frame accuracy cannot be guaranteed, but the result is good enough for some use cases.

cue

The cue timestamp expressed in a UNIX timestamp in microseconds. Default is 0.

preroll

The duration of content to pass on as preroll expressed in seconds. Default is 0.

buffer

The maximum duration of content to buffer before waiting for the cue expressed in seconds. Default is 0.

curves
Apply color adjustments using curves.

This filter is similar to the Adobe Photoshop and GIMP curves tools. Each component (red, green and blue) has its values defined by N key points tied from each other using a smooth curve. The x-axis represents the pixel values from the input frame, and the y-axis the new pixel values to be set for the output frame.

By default, a component curve is defined by the two points (0;0) and (1;1). This creates a straight line where each original pixel value is "adjusted" to its own value, which means no change to the image.

The filter allows you to redefine these two points and add some more. A new curve will be define to pass smoothly through all these new coordinates. The new defined points needs to be strictly increasing over the x-axis, and their x and y values must be in the [0;1] interval. The curve is formed by using a natural or monotonic cubic spline interpolation, depending on the interp option (default: "natural"). The "natural" spline produces a smoother curve in general while the monotonic ("pchip") spline guarantees the transitions between the specified points to be monotonic. If the computed curves happened to go outside the vector spaces, the values will be clipped accordingly.

The filter accepts the following options:
preset

Select one of the available color presets. This option can be used in addition to the r, g, b parameters; in this case, the later options takes priority on the preset values. Available presets are:
none
color_negative
cross_process
darker
increase_contrast
lighter
linear_contrast
medium_contrast
negative
strong_contrast
vintage

Default is "none".

master, m

Set the master key points. These points will define a second pass mapping. It is sometimes called a "luminance" or "value" mapping. It can be used with r, g, b or all since it acts like a post-processing LUT.

red, r

Set the key points for the red component.

green, g

Set the key points for the green component.

blue, b

Set the key points for the blue component.

all

Set the key points for all components (not including master). Can be used in addition to the other key points component options. In this case, the unset component(s) will fallback on this all setting.

psfile

Specify a Photoshop curves file (".acv") to import the settings from.

plot

Save Gnuplot script of the curves in specified file.

interp

Specify the kind of interpolation. Available algorithms are:
natural

Natural cubic spline using a piece-wise cubic polynomial that is twice continuously differentiable.

pchip

Monotonic cubic spline using a piecewise cubic Hermite interpolating polynomial (PCHIP).

To avoid some filtergraph syntax conflicts, each key points list need to be defined using the following syntax: "x0/y0 x1/y1 x2/y2 ...".

Commands

This filter supports same commands as options.

Examples

Increase slightly the middle level of blue:

curves=blue='0/0 0.5/0.58 1/1'

Vintage effect:

curves=r='0/0.11 .42/.51 1/0.95':g='0/0 0.50/0.48 1/1':b='0/0.22 .49/.44 1/0.8'

Here we obtain the following coordinates for each components:

red

"(0;0.11) (0.42;0.51) (1;0.95)"

green

"(0;0) (0.50;0.48) (1;1)"

blue

"(0;0.22) (0.49;0.44) (1;0.80)"

The previous example can also be achieved with the associated built-in preset:

curves=preset=vintage

Or simply:

curves=vintage

Use a Photoshop preset and redefine the points of the green component:

curves=psfile='MyCurvesPresets/purple.acv':green='0/0 0.45/0.53 1/1'

Check out the curves of the "cross_process" profile using ffmpeg and gnuplot:

ffmpeg -f lavfi -i color -vf curves=cross_process:plot=/tmp/curves.plt -frames:v 1 -f null -
gnuplot -p /tmp/curves.plt

datascope
Video data analysis filter.

This filter shows hexadecimal pixel values of part of video.

The filter accepts the following options:
size, s

Set output video size.

x

Set x offset from where to pick pixels.

y

Set y offset from where to pick pixels.

mode

Set scope mode, can be one of the following:
mono

Draw hexadecimal pixel values with white color on black background.

color

Draw hexadecimal pixel values with input video pixel color on black background.

color2

Draw hexadecimal pixel values on color background picked from input video, the text color is picked in such way so its always visible.

axis

Draw rows and columns numbers on left and top of video.

opacity

Set background opacity.

format

Set display number format. Can be "hex", or "dec". Default is "hex".

components

Set pixel components to display. By default all pixel components are displayed.

Commands

This filter supports same commands as options excluding "size" option.

dblur
Apply Directional blur filter.

The filter accepts the following options:
angle

Set angle of directional blur. Default is 45.

radius

Set radius of directional blur. Default is 5.

planes

Set which planes to filter. By default all planes are filtered.

Commands

This filter supports same commands as options. The command accepts the same syntax of the corresponding option.

If the specified expression is not valid, it is kept at its current value.

dctdnoiz
Denoise frames using 2D DCT (frequency domain filtering).

This filter is not designed for real time.

The filter accepts the following options:
sigma, s

Set the noise sigma constant.

This sigma defines a hard threshold of "3 * sigma"; every DCT coefficient (absolute value) below this threshold with be dropped.

If you need a more advanced filtering, see expr.

Default is 0.

overlap

Set number overlapping pixels for each block. Since the filter can be slow, you may want to reduce this value, at the cost of a less effective filter and the risk of various artefacts.

If the overlapping value doesn’t permit processing the whole input width or height, a warning will be displayed and according borders won’t be denoised.

Default value is blocksize-1, which is the best possible setting.

expr, e

Set the coefficient factor expression.

For each coefficient of a DCT block, this expression will be evaluated as a multiplier value for the coefficient.

If this is option is set, the sigma option will be ignored.

The absolute value of the coefficient can be accessed through the c variable.

n

Set the blocksize using the number of bits. "1<<n" defines the blocksize, which is the width and height of the processed blocks.

The default value is 3 (8x8) and can be raised to 4 for a blocksize of 16x16. Note that changing this setting has huge consequences on the speed processing. Also, a larger block size does not necessarily means a better de-noising.

Examples

Apply a denoise with a sigma of 4.5:

dctdnoiz=4.5

The same operation can be achieved using the expression system:

dctdnoiz=e='gte(c, 4.5*3)'

Violent denoise using a block size of "16x16":

dctdnoiz=15:n=4

deband
Remove banding artifacts from input video. It works by replacing banded pixels with average value of referenced pixels.

The filter accepts the following options:
1thr
2thr
3thr
4thr

Set banding detection threshold for each plane. Default is 0.02. Valid range is 0.00003 to 0.5. If difference between current pixel and reference pixel is less than threshold, it will be considered as banded.

range, r

Banding detection range in pixels. Default is 16. If positive, random number in range 0 to set value will be used. If negative, exact absolute value will be used. The range defines square of four pixels around current pixel.

direction, d

Set direction in radians from which four pixel will be compared. If positive, random direction from 0 to set direction will be picked. If negative, exact of absolute value will be picked. For example direction 0, -PI or -2*PI radians will pick only pixels on same row and -PI/2 will pick only pixels on same column.

blur, b

If enabled, current pixel is compared with average value of all four surrounding pixels. The default is enabled. If disabled current pixel is compared with all four surrounding pixels. The pixel is considered banded if only all four differences with surrounding pixels are less than threshold.

coupling, c

If enabled, current pixel is changed if and only if all pixel components are banded, e.g. banding detection threshold is triggered for all color components. The default is disabled.

Commands

This filter supports the all above options as commands.

deblock
Remove blocking artifacts from input video.

The filter accepts the following options:
filter

Set filter type, can be weak or strong. Default is strong. This controls what kind of deblocking is applied.

block

Set size of block, allowed range is from 4 to 512. Default is 8.

alpha
beta
gamma
delta

Set blocking detection thresholds. Allowed range is 0 to 1. Defaults are: 0.098 for alpha and 0.05 for the rest. Using higher threshold gives more deblocking strength. Setting alpha controls threshold detection at exact edge of block. Remaining options controls threshold detection near the edge. Each one for below/above or left/right. Setting any of those to 0 disables deblocking.

planes

Set planes to filter. Default is to filter all available planes.

Examples

Deblock using weak filter and block size of 4 pixels.

deblock=filter=weak:block=4

Deblock using strong filter, block size of 4 pixels and custom thresholds for deblocking more edges.

deblock=filter=strong:block=4:alpha=0.12:beta=0.07:gamma=0.06:delta=0.05

Similar as above, but filter only first plane.

deblock=filter=strong:block=4:alpha=0.12:beta=0.07:gamma=0.06:delta=0.05:planes=1

Similar as above, but filter only second and third plane.

deblock=filter=strong:block=4:alpha=0.12:beta=0.07:gamma=0.06:delta=0.05:planes=6

Commands

This filter supports the all above options as commands.

decimate
Drop duplicated frames at regular intervals.

The filter accepts the following options:
cycle

Set the number of frames from which one will be dropped. Setting this to N means one frame in every batch of N frames will be dropped. Default is 5.

dupthresh

Set the threshold for duplicate detection. If the difference metric for a frame is less than or equal to this value, then it is declared as duplicate. Default is 1.1

scthresh

Set scene change threshold. Default is 15.

blockx
blocky

Set the size of the x and y-axis blocks used during metric calculations. Larger blocks give better noise suppression, but also give worse detection of small movements. Must be a power of two. Default is 32.

ppsrc

Mark main input as a pre-processed input and activate clean source input stream. This allows the input to be pre-processed with various filters to help the metrics calculation while keeping the frame selection lossless. When set to 1, the first stream is for the pre-processed input, and the second stream is the clean source from where the kept frames are chosen. Default is 0.

chroma

Set whether or not chroma is considered in the metric calculations. Default is 1.

mixed

Set whether or not the input only partially contains content to be decimated. Default is "false". If enabled video output stream will be in variable frame rate.

deconvolve
Apply 2D deconvolution of video stream in frequency domain using second stream as impulse.

The filter accepts the following options:
planes

Set which planes to process.

impulse

Set which impulse video frames will be processed, can be first or all. Default is all.

noise

Set noise when doing divisions. Default is 0.0000001. Useful when width and height are not same and not power of 2 or if stream prior to convolving had noise.

The "deconvolve" filter also supports the framesync options.

dedot
Reduce cross-luminance (dot-crawl) and cross-color (rainbows) from video.

It accepts the following options:

m

Set mode of operation. Can be combination of dotcrawl for cross-luminance reduction and/or rainbows for cross-color reduction.

lt

Set spatial luma threshold. Lower values increases reduction of cross-luminance.

tl

Set tolerance for temporal luma. Higher values increases reduction of cross-luminance.

tc

Set tolerance for chroma temporal variation. Higher values increases reduction of cross-color.

ct

Set temporal chroma threshold. Lower values increases reduction of cross-color.

deflate
Apply deflate effect to the video.

This filter replaces the pixel by the local(3x3) average by taking into account only values lower than the pixel.

It accepts the following options:
threshold0
threshold1
threshold2
threshold3

Limit the maximum change for each plane, default is 65535. If 0, plane will remain unchanged.

Commands

This filter supports the all above options as commands.

deflicker
Remove temporal frame luminance variations.

It accepts the following options:
size, s

Set moving-average filter size in frames. Default is 5. Allowed range is 2 - 129.

mode, m

Set averaging mode to smooth temporal luminance variations.

Available values are:

am

Arithmetic mean

gm

Geometric mean

hm

Harmonic mean

qm

Quadratic mean

cm

Cubic mean

pm

Power mean

median

Median

bypass

Do not actually modify frame. Useful when one only wants metadata.

dejudder
Remove judder produced by partially interlaced telecined content.

Judder can be introduced, for instance, by pullup filter. If the original source was partially telecined content then the output of "pullup,dejudder" will have a variable frame rate. May change the recorded frame rate of the container. Aside from that change, this filter will not affect constant frame rate video.

The option available in this filter is:
cycle

Specify the length of the window over which the judder repeats.

Accepts any integer greater than 1. Useful values are:

4

If the original was telecined from 24 to 30 fps (Film to NTSC).

5

If the original was telecined from 25 to 30 fps (PAL to NTSC).

20

If a mixture of the two.

The default is 4.

delogo
Suppress a TV station logo by a simple interpolation of the surrounding pixels. Just set a rectangle covering the logo and watch it disappear (and sometimes something even uglier appear - your mileage may vary).

It accepts the following parameters:

x

y

Specify the top left corner coordinates of the logo. They must be specified.

w

h

Specify the width and height of the logo to clear. They must be specified.

show

When set to 1, a green rectangle is drawn on the screen to simplify finding the right x, y, w, and h parameters. The default value is 0.

The rectangle is drawn on the outermost pixels which will be (partly) replaced with interpolated values. The values of the next pixels immediately outside this rectangle in each direction will be used to compute the interpolated pixel values inside the rectangle.

Examples

Set a rectangle covering the area with top left corner coordinates 0,0 and size 100x77:

delogo=x=0:y=0:w=100:h=77

derain
Remove the rain in the input image/video by applying the derain methods based on convolutional neural networks. Supported models:

Recurrent Squeeze-and-Excitation Context Aggregation Net (RESCAN). See <http://openaccess.thecvf.com/content_ECCV_2018/papers/Xia_Li_Recurrent_Squeeze-and-Excitation_Context_ECCV_2018_paper.pdf>.

Training as well as model generation scripts are provided in the repository at <https://github.com/XueweiMeng/derain_filter.git>.

The filter accepts the following options:
filter_type

Specify which filter to use. This option accepts the following values:
derain

Derain filter. To conduct derain filter, you need to use a derain model.

dehaze

Dehaze filter. To conduct dehaze filter, you need to use a dehaze model.

Default value is derain.

dnn_backend

Specify which DNN backend to use for model loading and execution. This option accepts the following values:
tensorflow

TensorFlow backend. To enable this backend you need to install the TensorFlow for C library (see <https://www.tensorflow.org/install/lang_c>) and configure FFmpeg with "--enable-libtensorflow"

model

Set path to model file specifying network architecture and its parameters. Note that different backends use different file formats. TensorFlow can load files for only its format.

To get full functionality (such as async execution), please use the dnn_processing filter.

deshake
Attempt to fix small changes in horizontal and/or vertical shift. This filter helps remove camera shake from hand-holding a camera, bumping a tripod, moving on a vehicle, etc.

The filter accepts the following options:

x

y

w

h

Specify a rectangular area where to limit the search for motion vectors. If desired the search for motion vectors can be limited to a rectangular area of the frame defined by its top left corner, width and height. These parameters have the same meaning as the drawbox filter which can be used to visualise the position of the bounding box.

This is useful when simultaneous movement of subjects within the frame might be confused for camera motion by the motion vector search.

If any or all of x, y, w and h are set to -1 then the full frame is used. This allows later options to be set without specifying the bounding box for the motion vector search.

Default - search the whole frame.

rx

ry

Specify the maximum extent of movement in x and y directions in the range 0-64 pixels. Default 16.

edge

Specify how to generate pixels to fill blanks at the edge of the frame. Available values are:
blank, 0

Fill zeroes at blank locations

original, 1

Original image at blank locations

clamp, 2

Extruded edge value at blank locations

mirror, 3

Mirrored edge at blank locations

Default value is mirror.

blocksize

Specify the blocksize to use for motion search. Range 4-128 pixels, default 8.

contrast

Specify the contrast threshold for blocks. Only blocks with more than the specified contrast (difference between darkest and lightest pixels) will be considered. Range 1-255, default 125.

search

Specify the search strategy. Available values are:
exhaustive, 0

Set exhaustive search

less, 1

Set less exhaustive search.

Default value is exhaustive.

filename

If set then a detailed log of the motion search is written to the specified file.

despill
Remove unwanted contamination of foreground colors, caused by reflected color of greenscreen or bluescreen.

This filter accepts the following options:
type

Set what type of despill to use.

mix

Set how spillmap will be generated.

expand

Set how much to get rid of still remaining spill.

red

Controls amount of red in spill area.

green

Controls amount of green in spill area. Should be -1 for greenscreen.

blue

Controls amount of blue in spill area. Should be -1 for bluescreen.

brightness

Controls brightness of spill area, preserving colors.

alpha

Modify alpha from generated spillmap.

Commands

This filter supports the all above options as commands.

detelecine
Apply an exact inverse of the telecine operation. It requires a predefined pattern specified using the pattern option which must be the same as that passed to the telecine filter.

This filter accepts the following options:
first_field

top, t

top field first

bottom, b

bottom field first The default value is "top".

pattern

A string of numbers representing the pulldown pattern you wish to apply. The default value is 23.

start_frame

A number representing position of the first frame with respect to the telecine pattern. This is to be used if the stream is cut. The default value is 0.

dilation
Apply dilation effect to the video.

This filter replaces the pixel by the local(3x3) maximum.

It accepts the following options:
threshold0
threshold1
threshold2
threshold3

Limit the maximum change for each plane, default is 65535. If 0, plane will remain unchanged.

coordinates

Flag which specifies the pixel to refer to. Default is 255 i.e. all eight pixels are used.

Flags to local 3x3 coordinates maps like this:

1 2 3
4 5
6 7 8

Commands

This filter supports the all above options as commands.

displace
Displace pixels as indicated by second and third input stream.

It takes three input streams and outputs one stream, the first input is the source, and second and third input are displacement maps.

The second input specifies how much to displace pixels along the x-axis, while the third input specifies how much to displace pixels along the y-axis. If one of displacement map streams terminates, last frame from that displacement map will be used.

Note that once generated, displacements maps can be reused over and over again.

A description of the accepted options follows.
edge

Set displace behavior for pixels that are out of range.

Available values are:
blank

Missing pixels are replaced by black pixels.

smear

Adjacent pixels will spread out to replace missing pixels.

wrap

Out of range pixels are wrapped so they point to pixels of other side.

mirror

Out of range pixels will be replaced with mirrored pixels.

Default is smear.

Examples

Add ripple effect to rgb input of video size hd720:

ffmpeg -i INPUT -f lavfi -i nullsrc=s=hd720,lutrgb=128:128:128 -f lavfi -i nullsrc=s=hd720,geq='r=128+30*sin(2*PI*X/400+T):g=128+30*sin(2*PI*X/400+T):b=128+30*sin(2*PI*X/400+T)' -lavfi '[0][1][2]displace' OUTPUT

Add wave effect to rgb input of video size hd720:

ffmpeg -i INPUT -f lavfi -i nullsrc=hd720,geq='r=128+80*(sin(sqrt((X-W/2)*(X-W/2)+(Y-H/2)*(Y-H/2))/220*2*PI+T)):g=128+80*(sin(sqrt((X-W/2)*(X-W/2)+(Y-H/2)*(Y-H/2))/220*2*PI+T)):b=128+80*(sin(sqrt((X-W/2)*(X-W/2)+(Y-H/2)*(Y-H/2))/220*2*PI+T))' -lavfi '[1]split[x][y],[0][x][y]displace' OUTPUT

dnn_classify
Do classification with deep neural networks based on bounding boxes.

The filter accepts the following options:
dnn_backend

Specify which DNN backend to use for model loading and execution. This option accepts only openvino now, tensorflow backends will be added.

model

Set path to model file specifying network architecture and its parameters. Note that different backends use different file formats.

input

Set the input name of the dnn network.

output

Set the output name of the dnn network.

confidence

Set the confidence threshold (default: 0.5).

labels

Set path to label file specifying the mapping between label id and name. Each label name is written in one line, tailing spaces and empty lines are skipped. The first line is the name of label id 0, and the second line is the name of label id 1, etc. The label id is considered as name if the label file is not provided.

backend_configs

Set the configs to be passed into backend

For tensorflow backend, you can set its configs with sess_config options, please use tools/python/tf_sess_config.py to get the configs for your system.

dnn_detect
Do object detection with deep neural networks.

The filter accepts the following options:
dnn_backend

Specify which DNN backend to use for model loading and execution. This option accepts only openvino now, tensorflow backends will be added.

model

Set path to model file specifying network architecture and its parameters. Note that different backends use different file formats.

input

Set the input name of the dnn network.

output

Set the output name of the dnn network.

confidence

Set the confidence threshold (default: 0.5).

labels

Set path to label file specifying the mapping between label id and name. Each label name is written in one line, tailing spaces and empty lines are skipped. The first line is the name of label id 0 (usually it is ’background’), and the second line is the name of label id 1, etc. The label id is considered as name if the label file is not provided.

backend_configs

Set the configs to be passed into backend. To use async execution, set async (default: set). Roll back to sync execution if the backend does not support async.

dnn_processing
Do image processing with deep neural networks. It works together with another filter which converts the pixel format of the Frame to what the dnn network requires.

The filter accepts the following options:
dnn_backend

Specify which DNN backend to use for model loading and execution. This option accepts the following values:
tensorflow

TensorFlow backend. To enable this backend you need to install the TensorFlow for C library (see <https://www.tensorflow.org/install/lang_c>) and configure FFmpeg with "--enable-libtensorflow"

openvino

OpenVINO backend. To enable this backend you need to build and install the OpenVINO for C library (see <https://github.com/openvinotoolkit/openvino/blob/master/build-instruction.md>) and configure FFmpeg with "--enable-libopenvino" (--extra-cflags=-I... --extra-ldflags=-L... might be needed if the header files and libraries are not installed into system path)

model

Set path to model file specifying network architecture and its parameters. Note that different backends use different file formats. TensorFlow, OpenVINO backend can load files for only its format.

input

Set the input name of the dnn network.

output

Set the output name of the dnn network.

backend_configs

Set the configs to be passed into backend. To use async execution, set async (default: set). Roll back to sync execution if the backend does not support async.

For tensorflow backend, you can set its configs with sess_config options, please use tools/python/tf_sess_config.py to get the configs of TensorFlow backend for your system.

Examples

Remove rain in rgb24 frame with can.pb (see derain filter):

./ffmpeg -i rain.jpg -vf format=rgb24,dnn_processing=dnn_backend=tensorflow:model=can.pb:input=x:output=y derain.jpg

Handle the Y channel with srcnn.pb (see sr filter) for frame with yuv420p (planar YUV formats supported):

./ffmpeg -i 480p.jpg -vf format=yuv420p,scale=w=iw*2:h=ih*2,dnn_processing=dnn_backend=tensorflow:model=srcnn.pb:input=x:output=y -y srcnn.jpg

Handle the Y channel with espcn.pb (see sr filter), which changes frame size, for format yuv420p (planar YUV formats supported), please use tools/python/tf_sess_config.py to get the configs of TensorFlow backend for your system.

./ffmpeg -i 480p.jpg -vf format=yuv420p,dnn_processing=dnn_backend=tensorflow:model=espcn.pb:input=x:output=y:backend_configs=sess_config=0x10022805320e09cdccccccccccec3f20012a01303801 -y tmp.espcn.jpg

drawbox
Draw a colored box on the input image.

It accepts the following parameters:

x

y

The expressions which specify the top left corner coordinates of the box. It defaults to 0.

width, w
height, h

The expressions which specify the width and height of the box; if 0 they are interpreted as the input width and height. It defaults to 0.

color, c

Specify the color of the box to write. For the general syntax of this option, check the "Color" section in the ffmpeg-utils manual. If the special value "invert" is used, the box edge color is the same as the video with inverted luma.

thickness, t

The expression which sets the thickness of the box edge. A value of "fill" will create a filled box. Default value is 3.

See below for the list of accepted constants.

replace

Applicable if the input has alpha. With value 1, the pixels of the painted box will overwrite the video’s color and alpha pixels. Default is 0, which composites the box onto the input, leaving the video’s alpha intact.

The parameters for x, y, w and h and t are expressions containing the following constants:

dar

The input display aspect ratio, it is the same as (w / h) * sar.

hsub
vsub

horizontal and vertical chroma subsample values. For example for the pixel format "yuv422p" hsub is 2 and vsub is 1.

in_h, ih
in_w, iw

The input width and height.

sar

The input sample aspect ratio.

x

y

The x and y offset coordinates where the box is drawn.

w

h

The width and height of the drawn box.

box_source

Box source can be set as side_data_detection_bboxes if you want to use box data in detection bboxes of side data.

If box_source is set, the x, y, width and height will be ignored and still use box data in detection bboxes of side data. So please do not use this parameter if you were not sure about the box source.

t

The thickness of the drawn box.

These constants allow the x, y, w, h and t expressions to refer to each other, so you may for example specify "y=x/dar" or "h=w/dar".

Examples

Draw a black box around the edge of the input image:

drawbox

Draw a box with color red and an opacity of 50%:

drawbox=10:20:200:60:red [AT] 0.5

The previous example can be specified as:

drawbox=x=10:y=20:w=200:h=60:color=red [AT] 0.5

Fill the box with pink color:

drawbox=x=10:y=10:w=100:h=100:color=pink [AT] 0.5:t=fill

Draw a 2-pixel red 2.40:1 mask:

drawbox=x=-t:y=0.5*(ih-iw/2.4)-t:w=iw+t*2:h=iw/2.4+t*2:t=2:c=red

Commands

This filter supports same commands as options. The command accepts the same syntax of the corresponding option.

If the specified expression is not valid, it is kept at its current value.

drawgraph
Draw a graph using input video metadata.

It accepts the following parameters:

m1

Set 1st frame metadata key from which metadata values will be used to draw a graph.

fg1

Set 1st foreground color expression.

m2

Set 2nd frame metadata key from which metadata values will be used to draw a graph.

fg2

Set 2nd foreground color expression.

m3

Set 3rd frame metadata key from which metadata values will be used to draw a graph.

fg3

Set 3rd foreground color expression.

m4

Set 4th frame metadata key from which metadata values will be used to draw a graph.

fg4

Set 4th foreground color expression.

min

Set minimal value of metadata value.

max

Set maximal value of metadata value.

bg

Set graph background color. Default is white.

mode

Set graph mode.

Available values for mode is:

bar

dot

line

Default is "line".

slide

Set slide mode.

Available values for slide is:
frame

Draw new frame when right border is reached.

replace

Replace old columns with new ones.

scroll

Scroll from right to left.

rscroll

Scroll from left to right.

picture

Draw single picture.

Default is "frame".

size

Set size of graph video. For the syntax of this option, check the "Video size" section in the ffmpeg-utils manual. The default value is "900x256".

rate, r

Set the output frame rate. Default value is 25.

The foreground color expressions can use the following variables:

MIN

Minimal value of metadata value.

MAX

Maximal value of metadata value.

VAL

Current metadata key value.

The color is defined as 0xAABBGGRR.

Example using metadata from signalstats filter:

signalstats,drawgraph=lavfi.signalstats.YAVG:min=0:max=255

Example using metadata from ebur128 filter:

ebur128=metadata=1,adrawgraph=lavfi.r128.M:min=-120:max=5

drawgrid
Draw a grid on the input image.

It accepts the following parameters:

x

y

The expressions which specify the coordinates of some point of grid intersection (meant to configure offset). Both default to 0.

width, w
height, h

The expressions which specify the width and height of the grid cell, if 0 they are interpreted as the input width and height, respectively, minus "thickness", so image gets framed. Default to 0.

color, c

Specify the color of the grid. For the general syntax of this option, check the "Color" section in the ffmpeg-utils manual. If the special value "invert" is used, the grid color is the same as the video with inverted luma.

thickness, t

The expression which sets the thickness of the grid line. Default value is 1.

See below for the list of accepted constants.

replace

Applicable if the input has alpha. With 1 the pixels of the painted grid will overwrite the video’s color and alpha pixels. Default is 0, which composites the grid onto the input, leaving the video’s alpha intact.

The parameters for x, y, w and h and t are expressions containing the following constants:

dar

The input display aspect ratio, it is the same as (w / h) * sar.

hsub
vsub

horizontal and vertical chroma subsample values. For example for the pixel format "yuv422p" hsub is 2 and vsub is 1.

in_h, ih
in_w, iw

The input grid cell width and height.

sar

The input sample aspect ratio.

x

y

The x and y coordinates of some point of grid intersection (meant to configure offset).

w

h

The width and height of the drawn cell.

t

The thickness of the drawn cell.

These constants allow the x, y, w, h and t expressions to refer to each other, so you may for example specify "y=x/dar" or "h=w/dar".

Examples

Draw a grid with cell 100x100 pixels, thickness 2 pixels, with color red and an opacity of 50%:

drawgrid=width=100:height=100:thickness=2:color=red [AT] 0.5

Draw a white 3x3 grid with an opacity of 50%:

drawgrid=w=iw/3:h=ih/3:t=2:c=white [AT] 0.5

Commands

This filter supports same commands as options. The command accepts the same syntax of the corresponding option.

If the specified expression is not valid, it is kept at its current value.

drawtext
Draw a text string or text from a specified file on top of a video, using the libfreetype library.

To enable compilation of this filter, you need to configure FFmpeg with "--enable-libfreetype" and "--enable-libharfbuzz". To enable default font fallback and the font option you need to configure FFmpeg with "--enable-libfontconfig". To enable the text_shaping option, you need to configure FFmpeg with "--enable-libfribidi".

Syntax

It accepts the following parameters:

box

Used to draw a box around text using the background color. The value must be either 1 (enable) or 0 (disable). The default value of box is 0.

boxborderw

Set the width of the border to be drawn around the box using boxcolor. The value must be specified using one of the following formats:
*<"boxborderw=10" set the width of all the borders to 10>
*<"boxborderw=10|20" set the width of the top and bottom borders to
10>

and the width of the left and right borders to 20

*<"boxborderw=10|20|30" set the width of the top border to 10, the
width>

of the bottom border to 30 and the width of the left and right borders to 20

*<"boxborderw=10|20|30|40" set the borders width to 10 (top), 20
(right),>

30 (bottom), 40 (left)

The default value of boxborderw is "0".

boxcolor

The color to be used for drawing box around text. For the syntax of this option, check the "Color" section in the ffmpeg-utils manual.

The default value of boxcolor is "white".

line_spacing

Set the line spacing in pixels. The default value of line_spacing is 0.

text_align

Set the vertical and horizontal alignment of the text with respect to the box boundaries. The value is combination of flags, one for the vertical alignment (T=top, M=middle, B=bottom) and one for the horizontal alignment (L=left, C=center, R=right). Please note that tab characters are only supported with the left horizontal alignment.

y_align

Specify what the y value is referred to. Possible values are:
*<"text" the top of the highest glyph of the first text line is
placed at y>
*<"baseline" the baseline of the first text line is placed at y>
*<"font" the baseline of the first text line is placed at y plus
the>

ascent (in pixels) defined in the font metrics

The default value of y_align is "text" for backward compatibility.

borderw

Set the width of the border to be drawn around the text using bordercolor. The default value of borderw is 0.

bordercolor

Set the color to be used for drawing border around text. For the syntax of this option, check the "Color" section in the ffmpeg-utils manual.

The default value of bordercolor is "black".

expansion

Select how the text is expanded. Can be either "none", "strftime" (deprecated) or "normal" (default). See the drawtext_expansion, Text expansion section below for details.

basetime

Set a start time for the count. Value is in microseconds. Only applied in the deprecated "strftime" expansion mode. To emulate in normal expansion mode use the "pts" function, supplying the start time (in seconds) as the second argument.

fix_bounds

If true, check and fix text coords to avoid clipping.

fontcolor

The color to be used for drawing fonts. For the syntax of this option, check the "Color" section in the ffmpeg-utils manual.

The default value of fontcolor is "black".

fontcolor_expr

String which is expanded the same way as text to obtain dynamic fontcolor value. By default this option has empty value and is not processed. When this option is set, it overrides fontcolor option.

font

The font family to be used for drawing text. By default Sans.

fontfile

The font file to be used for drawing text. The path must be included. This parameter is mandatory if the fontconfig support is disabled.

alpha

Draw the text applying alpha blending. The value can be a number between 0.0 and 1.0. The expression accepts the same variables x, y as well. The default value is 1. Please see fontcolor_expr.

fontsize

The font size to be used for drawing text. The default value of fontsize is 16.

text_shaping

If set to 1, attempt to shape the text (for example, reverse the order of right-to-left text and join Arabic characters) before drawing it. Otherwise, just draw the text exactly as given. By default 1 (if supported).

ft_load_flags

The flags to be used for loading the fonts.

The flags map the corresponding flags supported by libfreetype, and are a combination of the following values:
default
no_scale
no_hinting
render
no_bitmap
vertical_layout
force_autohint
crop_bitmap
pedantic
ignore_global_advance_width
no_recurse
ignore_transform
monochrome
linear_design
no_autohint

Default value is "default".

For more information consult the documentation for the FT_LOAD_* libfreetype flags.

shadowcolor

The color to be used for drawing a shadow behind the drawn text. For the syntax of this option, check the "Color" section in the ffmpeg-utils manual.

The default value of shadowcolor is "black".

boxw

Set the width of the box to be drawn around text. The default value of boxw is computed automatically to match the text width

boxh

Set the height of the box to be drawn around text. The default value of boxh is computed automatically to match the text height

shadowx
shadowy

The x and y offsets for the text shadow position with respect to the position of the text. They can be either positive or negative values. The default value for both is "0".

start_number

The starting frame number for the n/frame_num variable. The default value is "0".

tabsize

The size in number of spaces to use for rendering the tab. Default value is 4.

timecode

Set the initial timecode representation in "hh:mm:ss[:;.]ff" format. It can be used with or without text parameter. timecode_rate option must be specified.

timecode_rate, rate, r

Set the timecode frame rate (timecode only). Value will be rounded to nearest integer. Minimum value is "1". Drop-frame timecode is supported for frame rates 30 & 60.

tc24hmax

If set to 1, the output of the timecode option will wrap around at 24 hours. Default is 0 (disabled).

text

The text string to be drawn. The text must be a sequence of UTF-8 encoded characters. This parameter is mandatory if no file is specified with the parameter textfile.

textfile

A text file containing text to be drawn. The text must be a sequence of UTF-8 encoded characters.

This parameter is mandatory if no text string is specified with the parameter text.

If both text and textfile are specified, an error is thrown.

text_source

Text source should be set as side_data_detection_bboxes if you want to use text data in detection bboxes of side data.

If text source is set, text and textfile will be ignored and still use text data in detection bboxes of side data. So please do not use this parameter if you are not sure about the text source.

reload

The textfile will be reloaded at specified frame interval. Be sure to update textfile atomically, or it may be read partially, or even fail. Range is 0 to INT_MAX. Default is 0.

x

y

The expressions which specify the offsets where text will be drawn within the video frame. They are relative to the top/left border of the output image.

The default value of x and y is "0".

See below for the list of accepted constants and functions.

The parameters for x and y are expressions containing the following constants and functions:

dar

input display aspect ratio, it is the same as (w / h) * sar

hsub
vsub

horizontal and vertical chroma subsample values. For example for the pixel format "yuv422p" hsub is 2 and vsub is 1.

line_h, lh

the height of each text line

main_h, h, H

the input height

main_w, w, W

the input width

max_glyph_a, ascent

the maximum distance from the baseline to the highest/upper grid coordinate used to place a glyph outline point, for all the rendered glyphs. It is a positive value, due to the grid’s orientation with the Y axis upwards.

max_glyph_d, descent

the maximum distance from the baseline to the lowest grid coordinate used to place a glyph outline point, for all the rendered glyphs. This is a negative value, due to the grid’s orientation, with the Y axis upwards.

max_glyph_h

maximum glyph height, that is the maximum height for all the glyphs contained in the rendered text, it is equivalent to ascent - descent.

max_glyph_w

maximum glyph width, that is the maximum width for all the glyphs contained in the rendered text

font_a

the ascent size defined in the font metrics

font_d

the descent size defined in the font metrics

top_a

the maximum ascender of the glyphs of the first text line

bottom_d

the maximum descender of the glyphs of the last text line

n

the number of input frame, starting from 0

rand(min, max)

return a random number included between min and max

sar

The input sample aspect ratio.

t

timestamp expressed in seconds, NAN if the input timestamp is unknown

text_h, th

the height of the rendered text

text_w, tw

the width of the rendered text

x

y

the x and y offset coordinates where the text is drawn.

These parameters allow the x and y expressions to refer to each other, so you can for example specify "y=x/dar".

pict_type

A one character description of the current frame’s picture type.

pkt_pos

The current packet’s position in the input file or stream (in bytes, from the start of the input). A value of -1 indicates this info is not available.

duration

The current packet’s duration, in seconds.

pkt_size

The current packet’s size (in bytes).

Text expansion

If expansion is set to "strftime", the filter recognizes sequences accepted by the "strftime" C function in the provided text and expands them accordingly. Check the documentation of "strftime". This feature is deprecated in favor of "normal" expansion with the "gmtime" or "localtime" expansion functions.

If expansion is set to "none", the text is printed verbatim.

If expansion is set to "normal" (which is the default), the following expansion mechanism is used.

The backslash character \, followed by any character, always expands to the second character.

Sequences of the form "%{...}" are expanded. The text between the braces is a function name, possibly followed by arguments separated by ’:’. If the arguments contain special characters or delimiters (’:’ or ’}’), they should be escaped.

Note that they probably must also be escaped as the value for the text option in the filter argument string and as the filter argument in the filtergraph description, and possibly also for the shell, that makes up to four levels of escaping; using a text file with the textfile option avoids these problems.

The following functions are available:
expr, e

The expression evaluation result.

It must take one argument specifying the expression to be evaluated, which accepts the same constants and functions as the x and y values. Note that not all constants should be used, for example the text size is not known when evaluating the expression, so the constants text_w and text_h will have an undefined value.

expr_int_format, eif

Evaluate the expression’s value and output as formatted integer.

The first argument is the expression to be evaluated, just as for the expr function. The second argument specifies the output format. Allowed values are x, X, d and u. They are treated exactly as in the "printf" function. The third parameter is optional and sets the number of positions taken by the output. It can be used to add padding with zeros from the left.

gmtime

The time at which the filter is running, expressed in UTC. It can accept an argument: a "strftime" C function format string. The format string is extended to support the variable %[1-6]N which prints fractions of the second with optionally specified number of digits.

localtime

The time at which the filter is running, expressed in the local time zone. It can accept an argument: a "strftime" C function format string. The format string is extended to support the variable %[1-6]N which prints fractions of the second with optionally specified number of digits.

metadata

Frame metadata. Takes one or two arguments.

The first argument is mandatory and specifies the metadata key.

The second argument is optional and specifies a default value, used when the metadata key is not found or empty.

Available metadata can be identified by inspecting entries starting with TAG included within each frame section printed by running "ffprobe -show_frames".

String metadata generated in filters leading to the drawtext filter are also available.

n, frame_num

The frame number, starting from 0.

pict_type

A one character description of the current picture type.

pts

The timestamp of the current frame. It can take up to three arguments.

The first argument is the format of the timestamp; it defaults to "flt" for seconds as a decimal number with microsecond accuracy; "hms" stands for a formatted [-]HH:MM:SS.mmm timestamp with millisecond accuracy. "gmtime" stands for the timestamp of the frame formatted as UTC time; "localtime" stands for the timestamp of the frame formatted as local time zone time.

The second argument is an offset added to the timestamp.

If the format is set to "hms", a third argument "24HH" may be supplied to present the hour part of the formatted timestamp in 24h format (00-23).

If the format is set to "localtime" or "gmtime", a third argument may be supplied: a "strftime" C function format string. By default, YYYY-MM-DD HH:MM:SS format will be used.

Commands

This filter supports altering parameters via commands:
reinit

Alter existing filter parameters.

Syntax for the argument is the same as for filter invocation, e.g.

fontsize=56:fontcolor=green:text='Hello World'

Full filter invocation with sendcmd would look like this:

sendcmd=c='56.0 drawtext reinit fontsize=56\:fontcolor=green\:text=Hello\\ World'

If the entire argument can’t be parsed or applied as valid values then the filter will continue with its existing parameters.

The following options are also supported as commands:
*<x>
*<y>
*<alpha>
*<fontsize>
*<fontcolor>
*<boxcolor>
*<bordercolor>
*<shadowcolor>
*<box>
*<boxw>
*<boxh>
*<boxborderw>
*<line_spacing>
*<text_align>
*<shadowx>
*<shadowy>
*<borderw>

Examples

Draw "Test Text" with font FreeSerif, using the default values for the optional parameters.

drawtext="fontfile=/usr/share/fonts/truetype/freefont/FreeSerif.ttf: text='Test Text'"

Draw ’Test Text’ with font FreeSerif of size 24 at position x=100 and y=50 (counting from the top-left corner of the screen), text is yellow with a red box around it. Both the text and the box have an opacity of 20%.

drawtext="fontfile=/usr/share/fonts/truetype/freefont/FreeSerif.ttf: text='Test Text':\
x=100: y=50: fontsize=24: fontcolor=yellow [AT] 0.2: box=1: boxcolor=red [AT] 0.2"

Note that the double quotes are not necessary if spaces are not used within the parameter list.

Show the text at the center of the video frame:

drawtext="fontsize=30:fontfile=FreeSerif.ttf:text='hello world':x=(w-text_w)/2:y=(h-text_h)/2"

Show the text at a random position, switching to a new position every 30 seconds:

drawtext="fontsize=30:fontfile=FreeSerif.ttf:text='hello world':x=if(eq(mod(t\,30)\,0)\,rand(0\,(w-text_w))\,x):y=if(eq(mod(t\,30)\,0)\,rand(0\,(h-text_h))\,y)"

Show a text line sliding from right to left in the last row of the video frame. The file LONG_LINE is assumed to contain a single line with no newlines.

drawtext="fontsize=15:fontfile=FreeSerif.ttf:text=LONG_LINE:y=h-line_h:x=-50*t"

Show the content of file CREDITS off the bottom of the frame and scroll up.

drawtext="fontsize=20:fontfile=FreeSerif.ttf:textfile=CREDITS:y=h-20*t"

Draw a single green letter "g", at the center of the input video. The glyph baseline is placed at half screen height.

drawtext="fontsize=60:fontfile=FreeSerif.ttf:fontcolor=green:text=g:x=(w-max_glyph_w)/2:y=h/2-ascent"

Show text for 1 second every 3 seconds:

drawtext="fontfile=FreeSerif.ttf:fontcolor=white:x=100:y=x/dar:enable=lt(mod(t\,3)\,1):text='blink'"

Use fontconfig to set the font. Note that the colons need to be escaped.

drawtext='fontfile=Linux Libertine O-40\:style=Semibold:text=FFmpeg'

Draw "Test Text" with font size dependent on height of the video.

drawtext="text='Test Text': fontsize=h/30: x=(w-text_w)/2: y=(h-text_h*2)"

Print the date of a real-time encoding (see documentation for the "strftime" C function):

drawtext='fontfile=FreeSans.ttf:text=%{localtime\:%a %b %d %Y}'

Show text fading in and out (appearing/disappearing):

#!/bin/sh
DS=1.0 # display start
DE=10.0 # display end
FID=1.5 # fade in duration
FOD=5 # fade out duration
ffplay -f lavfi "color,drawtext=text=TEST:fontsize=50:fontfile=FreeSerif.ttf:fontcolor_expr=ff0000%{eif\\\\: clip(255*(1*between(t\\, $DS + $FID\\, $DE - $FOD) + ((t - $DS)/$FID)*between(t\\, $DS\\, $DS + $FID) + (-(t - $DE)/$FOD)*between(t\\, $DE - $FOD\\, $DE) )\\, 0\\, 255) \\\\: x\\\\: 2 }"

Horizontally align multiple separate texts. Note that max_glyph_a and the fontsize value are included in the y offset.

drawtext=fontfile=FreeSans.ttf:text=DOG:fontsize=24:x=10:y=20+24-max_glyph_a,
drawtext=fontfile=FreeSans.ttf:text=cow:fontsize=24:x=80:y=20+24-max_glyph_a

Plot special lavf.image2dec.source_basename metadata onto each frame if such metadata exists. Otherwise, plot the string "NA". Note that image2 demuxer must have option -export_path_metadata 1 for the special metadata fields to be available for filters.

drawtext="fontsize=20:fontcolor=white:fontfile=FreeSans.ttf:text='%{metadata\:lavf.image2dec.source_basename\:NA}':x=10:y=10"

For more information about libfreetype, check: <http://www.freetype.org/>.

For more information about fontconfig, check: <http://freedesktop.org/software/fontconfig/fontconfig-user.html>.

For more information about libfribidi, check: <http://fribidi.org/>.

For more information about libharfbuzz, check: <https://github.com/harfbuzz/harfbuzz>.

edgedetect
Detect and draw edges. The filter uses the Canny Edge Detection algorithm.

The filter accepts the following options:

low

high

Set low and high threshold values used by the Canny thresholding algorithm.

The high threshold selects the "strong" edge pixels, which are then connected through 8-connectivity with the "weak" edge pixels selected by the low threshold.

low and high threshold values must be chosen in the range [0,1], and low should be lesser or equal to high.

Default value for low is "20/255", and default value for high is "50/255".

mode

Define the drawing mode.
wires

Draw white/gray wires on black background.

colormix

Mix the colors to create a paint/cartoon effect.

canny

Apply Canny edge detector on all selected planes.

Default value is wires.

planes

Select planes for filtering. By default all available planes are filtered.

Examples

Standard edge detection with custom values for the hysteresis thresholding:

edgedetect=low=0.1:high=0.4

Painting effect without thresholding:

edgedetect=mode=colormix:high=0

elbg
Apply a posterize effect using the ELBG (Enhanced LBG) algorithm.

For each input image, the filter will compute the optimal mapping from the input to the output given the codebook length, that is the number of distinct output colors.

This filter accepts the following options.
codebook_length, l

Set codebook length. The value must be a positive integer, and represents the number of distinct output colors. Default value is 256.

nb_steps, n

Set the maximum number of iterations to apply for computing the optimal mapping. The higher the value the better the result and the higher the computation time. Default value is 1.

seed, s

Set a random seed, must be an integer included between 0 and UINT32_MAX. If not specified, or if explicitly set to -1, the filter will try to use a good random seed on a best effort basis.

pal8

Set pal8 output pixel format. This option does not work with codebook length greater than 256. Default is disabled.

use_alpha

Include alpha values in the quantization calculation. Allows creating palettized output images (e.g. PNG8) with multiple alpha smooth blending.

entropy
Measure graylevel entropy in histogram of color channels of video frames.

It accepts the following parameters:
mode

Can be either normal or diff. Default is normal.

diff mode measures entropy of histogram delta values, absolute differences between neighbour histogram values.

epx
Apply the EPX magnification filter which is designed for pixel art.

It accepts the following option:

n

Set the scaling dimension: 2 for "2xEPX", 3 for "3xEPX". Default is 3.

eq
Set brightness, contrast, saturation and approximate gamma adjustment.

The filter accepts the following options:
contrast

Set the contrast expression. The value must be a float value in range -1000.0 to 1000.0. The default value is "1".

brightness

Set the brightness expression. The value must be a float value in range -1.0 to 1.0. The default value is "0".

saturation

Set the saturation expression. The value must be a float in range 0.0 to 3.0. The default value is "1".

gamma

Set the gamma expression. The value must be a float in range 0.1 to 10.0. The default value is "1".

gamma_r

Set the gamma expression for red. The value must be a float in range 0.1 to 10.0. The default value is "1".

gamma_g

Set the gamma expression for green. The value must be a float in range 0.1 to 10.0. The default value is "1".

gamma_b

Set the gamma expression for blue. The value must be a float in range 0.1 to 10.0. The default value is "1".

gamma_weight

Set the gamma weight expression. It can be used to reduce the effect of a high gamma value on bright image areas, e.g. keep them from getting overamplified and just plain white. The value must be a float in range 0.0 to 1.0. A value of 0.0 turns the gamma correction all the way down while 1.0 leaves it at its full strength. Default is "1".

eval

Set when the expressions for brightness, contrast, saturation and gamma expressions are evaluated.

It accepts the following values:
init

only evaluate expressions once during the filter initialization or when a command is processed

frame

evaluate expressions for each incoming frame

Default value is init.

The expressions accept the following parameters:

n

frame count of the input frame starting from 0

pos

byte position of the corresponding packet in the input file, NAN if unspecified; deprecated, do not use

r

frame rate of the input video, NAN if the input frame rate is unknown

t

timestamp expressed in seconds, NAN if the input timestamp is unknown

Commands

The filter supports the following commands:
contrast

Set the contrast expression.

brightness

Set the brightness expression.

saturation

Set the saturation expression.

gamma

Set the gamma expression.

gamma_r

Set the gamma_r expression.

gamma_g

Set gamma_g expression.

gamma_b

Set gamma_b expression.

gamma_weight

Set gamma_weight expression.

The command accepts the same syntax of the corresponding option.

If the specified expression is not valid, it is kept at its current value.

erosion
Apply erosion effect to the video.

This filter replaces the pixel by the local(3x3) minimum.

It accepts the following options:
threshold0
threshold1
threshold2
threshold3

Limit the maximum change for each plane, default is 65535. If 0, plane will remain unchanged.

coordinates

Flag which specifies the pixel to refer to. Default is 255 i.e. all eight pixels are used.

Flags to local 3x3 coordinates maps like this:

1 2 3
4 5
6 7 8

Commands

This filter supports the all above options as commands.

estdif
Deinterlace the input video ("estdif" stands for "Edge Slope Tracing Deinterlacing Filter").

Spatial only filter that uses edge slope tracing algorithm to interpolate missing lines. It accepts the following parameters:
mode

The interlacing mode to adopt. It accepts one of the following values:
frame

Output one frame for each frame.

field

Output one frame for each field.

The default value is "field".

parity

The picture field parity assumed for the input interlaced video. It accepts one of the following values:

tff

Assume the top field is first.

bff

Assume the bottom field is first.

auto

Enable automatic detection of field parity.

The default value is "auto". If the interlacing is unknown or the decoder does not export this information, top field first will be assumed.

deint

Specify which frames to deinterlace. Accepts one of the following values:

all

Deinterlace all frames.

interlaced

Only deinterlace frames marked as interlaced.

The default value is "all".

rslope

Specify the search radius for edge slope tracing. Default value is 1. Allowed range is from 1 to 15.

redge

Specify the search radius for best edge matching. Default value is 2. Allowed range is from 0 to 15.

ecost

Specify the edge cost for edge matching. Default value is 2. Allowed range is from 0 to 50.

mcost

Specify the middle cost for edge matching. Default value is 1. Allowed range is from 0 to 50.

dcost

Specify the distance cost for edge matching. Default value is 1. Allowed range is from 0 to 50.

interp

Specify the interpolation used. Default is 4-point interpolation. It accepts one of the following values:

2p

Two-point interpolation.

4p

Four-point interpolation.

6p

Six-point interpolation.

Commands

This filter supports same commands as options.

exposure
Adjust exposure of the video stream.

The filter accepts the following options:
exposure

Set the exposure correction in EV. Allowed range is from -3.0 to 3.0 EV Default value is 0 EV.

black

Set the black level correction. Allowed range is from -1.0 to 1.0. Default value is 0.

Commands

This filter supports same commands as options.

extractplanes
Extract color channel components from input video stream into separate grayscale video streams.

The filter accepts the following option:
planes

Set plane(s) to extract.

Available values for planes are:

y

u

v

a

r

g

b

Choosing planes not available in the input will result in an error. That means you cannot select "r", "g", "b" planes with "y", "u", "v" planes at same time.

Examples

Extract luma, u and v color channel component from input video frame into 3 grayscale outputs:

ffmpeg -i video.avi -filter_complex 'extractplanes=y+u+v[y][u][v]' -map '[y]' y.avi -map '[u]' u.avi -map '[v]' v.avi

fade
Apply a fade-in/out effect to the input video.

It accepts the following parameters:
type, t

The effect type can be either "in" for a fade-in, or "out" for a fade-out effect. Default is "in".

start_frame, s

Specify the number of the frame to start applying the fade effect at. Default is 0.

nb_frames, n

The number of frames that the fade effect lasts. At the end of the fade-in effect, the output video will have the same intensity as the input video. At the end of the fade-out transition, the output video will be filled with the selected color. Default is 25.

alpha

If set to 1, fade only alpha channel, if one exists on the input. Default value is 0.

start_time, st

Specify the timestamp (in seconds) of the frame to start to apply the fade effect. If both start_frame and start_time are specified, the fade will start at whichever comes last. Default is 0.

duration, d

The number of seconds for which the fade effect has to last. At the end of the fade-in effect the output video will have the same intensity as the input video, at the end of the fade-out transition the output video will be filled with the selected color. If both duration and nb_frames are specified, duration is used. Default is 0 (nb_frames is used by default).

color, c

Specify the color of the fade. Default is "black".

Examples

Fade in the first 30 frames of video:

fade=in:0:30

The command above is equivalent to:

fade=t=in:s=0:n=30

Fade out the last 45 frames of a 200-frame video:

fade=out:155:45
fade=type=out:start_frame=155:nb_frames=45

Fade in the first 25 frames and fade out the last 25 frames of a 1000-frame video:

fade=in:0:25, fade=out:975:25

Make the first 5 frames yellow, then fade in from frame 5-24:

fade=in:5:20:color=yellow

Fade in alpha over first 25 frames of video:

fade=in:0:25:alpha=1

Make the first 5.5 seconds black, then fade in for 0.5 seconds:

fade=t=in:st=5.5:d=0.5

feedback
Apply feedback video filter.

This filter pass cropped input frames to 2nd output. From there it can be filtered with other video filters. After filter receives frame from 2nd input, that frame is combined on top of original frame from 1st input and passed to 1st output.

The typical usage is filter only part of frame.

The filter accepts the following options:

x

y

Set the top left crop position.

w

h

Set the crop size.

Examples

Blur only top left rectangular part of video frame size 100x100 with gblur filter.

[in][blurin]feedback=x=0:y=0:w=100:h=100[out][blurout];[blurout]gblur=8[blurin]

Draw black box on top left part of video frame of size 100x100 with drawbox filter.

[in][blurin]feedback=x=0:y=0:w=100:h=100[out][blurout];[blurout]drawbox=x=0:y=0:w=100:h=100:t=100[blurin]

fftdnoiz
Denoise frames using 3D FFT (frequency domain filtering).

The filter accepts the following options:
sigma

Set the noise sigma constant. This sets denoising strength. Default value is 1. Allowed range is from 0 to 30. Using very high sigma with low overlap may give blocking artifacts.

amount

Set amount of denoising. By default all detected noise is reduced. Default value is 1. Allowed range is from 0 to 1.

block

Set size of block in pixels, Default is 32, can be 8 to 256.

overlap

Set block overlap. Default is 0.5. Allowed range is from 0.2 to 0.8.

method

Set denoising method. Default is "wiener", can also be "hard".

prev

Set number of previous frames to use for denoising. By default is set to 0.

next

Set number of next frames to to use for denoising. By default is set to 0.

planes

Set planes which will be filtered, by default are all available filtered except alpha.

fftfilt
Apply arbitrary expressions to samples in frequency domain
dc_Y

Adjust the dc value (gain) of the luma plane of the image. The filter accepts an integer value in range 0 to 1000. The default value is set to 0.

dc_U

Adjust the dc value (gain) of the 1st chroma plane of the image. The filter accepts an integer value in range 0 to 1000. The default value is set to 0.

dc_V

Adjust the dc value (gain) of the 2nd chroma plane of the image. The filter accepts an integer value in range 0 to 1000. The default value is set to 0.

weight_Y

Set the frequency domain weight expression for the luma plane.

weight_U

Set the frequency domain weight expression for the 1st chroma plane.

weight_V

Set the frequency domain weight expression for the 2nd chroma plane.

eval

Set when the expressions are evaluated.

It accepts the following values:
init

Only evaluate expressions once during the filter initialization.

frame

Evaluate expressions for each incoming frame.

Default value is init.

The filter accepts the following variables:

X

Y

The coordinates of the current sample.

W

H

The width and height of the image.

N

The number of input frame, starting from 0.

WS

HS

The size of FFT array for horizontal and vertical processing.

Examples

High-pass:

fftfilt=dc_Y=128:weight_Y='squish(1-(Y+X)/100)'

Low-pass:

fftfilt=dc_Y=0:weight_Y='squish((Y+X)/100-1)'

Sharpen:

fftfilt=dc_Y=0:weight_Y='1+squish(1-(Y+X)/100)'

Blur:

fftfilt=dc_Y=0:weight_Y='exp(-4 * ((Y+X)/(W+H)))'

field
Extract a single field from an interlaced image using stride arithmetic to avoid wasting CPU time. The output frames are marked as non-interlaced.

The filter accepts the following options:
type

Specify whether to extract the top (if the value is 0 or "top") or the bottom field (if the value is 1 or "bottom").

fieldhint
Create new frames by copying the top and bottom fields from surrounding frames supplied as numbers by the hint file.
hint

Set file containing hints: absolute/relative frame numbers.

There must be one line for each frame in a clip. Each line must contain two numbers separated by the comma, optionally followed by "-" or "+". Numbers supplied on each line of file can not be out of [N-1,N+1] where N is current frame number for "absolute" mode or out of [-1, 1] range for "relative" mode. First number tells from which frame to pick up top field and second number tells from which frame to pick up bottom field.

If optionally followed by "+" output frame will be marked as interlaced, else if followed by "-" output frame will be marked as progressive, else it will be marked same as input frame. If optionally followed by "t" output frame will use only top field, or in case of "b" it will use only bottom field. If line starts with "#" or ";" that line is skipped.

mode

Can be item "absolute" or "relative" or "pattern". Default is "absolute". The "pattern" mode is same as "relative" mode, except at last entry of file if there are more frames to process than "hint" file is seek back to start.

Example of first several lines of "hint" file for "relative" mode:

0,0 - # first frame
1,0 - # second frame, use third's frame top field and second's frame bottom field
1,0 - # third frame, use fourth's frame top field and third's frame bottom field
1,0 -
0,0 -
0,0 -
1,0 -
1,0 -
1,0 -
0,0 -
0,0 -
1,0 -
1,0 -
1,0 -
0,0 -

fieldmatch
Field matching filter for inverse telecine. It is meant to reconstruct the progressive frames from a telecined stream. The filter does not drop duplicated frames, so to achieve a complete inverse telecine "fieldmatch" needs to be followed by a decimation filter such as decimate in the filtergraph.

The separation of the field matching and the decimation is notably motivated by the possibility of inserting a de-interlacing filter fallback between the two. If the source has mixed telecined and real interlaced content, "fieldmatch" will not be able to match fields for the interlaced parts. But these remaining combed frames will be marked as interlaced, and thus can be de-interlaced by a later filter such as yadif before decimation.

In addition to the various configuration options, "fieldmatch" can take an optional second stream, activated through the ppsrc option. If enabled, the frames reconstruction will be based on the fields and frames from this second stream. This allows the first input to be pre-processed in order to help the various algorithms of the filter, while keeping the output lossless (assuming the fields are matched properly). Typically, a field-aware denoiser, or brightness/contrast adjustments can help.

Note that this filter uses the same algorithms as TIVTC/TFM (AviSynth project) and VIVTC/VFM (VapourSynth project). The later is a light clone of TFM from which "fieldmatch" is based on. While the semantic and usage are very close, some behaviour and options names can differ.

The decimate filter currently only works for constant frame rate input. If your input has mixed telecined (30fps) and progressive content with a lower framerate like 24fps use the following filterchain to produce the necessary cfr stream: "dejudder,fps=30000/1001,fieldmatch,decimate".

The filter accepts the following options:
order

Specify the assumed field order of the input stream. Available values are:
auto

Auto detect parity (use FFmpeg’s internal parity value).

bff

Assume bottom field first.

tff

Assume top field first.

Note that it is sometimes recommended not to trust the parity announced by the stream.

Default value is auto.

mode

Set the matching mode or strategy to use. pc mode is the safest in the sense that it won’t risk creating jerkiness due to duplicate frames when possible, but if there are bad edits or blended fields it will end up outputting combed frames when a good match might actually exist. On the other hand, pcn_ub mode is the most risky in terms of creating jerkiness, but will almost always find a good frame if there is one. The other values are all somewhere in between pc and pcn_ub in terms of risking jerkiness and creating duplicate frames versus finding good matches in sections with bad edits, orphaned fields, blended fields, etc.

More details about p/c/n/u/b are available in p/c/n/u/b meaning section.

Available values are:

pc

2-way matching (p/c)

pc_n

2-way matching, and trying 3rd match if still combed (p/c + n)

pc_u

2-way matching, and trying 3rd match (same order) if still combed (p/c + u)

pc_n_ub

2-way matching, trying 3rd match if still combed, and trying 4th/5th matches if still combed (p/c + n + u/b)

pcn

3-way matching (p/c/n)

pcn_ub

3-way matching, and trying 4th/5th matches if all 3 of the original matches are detected as combed (p/c/n + u/b)

The parenthesis at the end indicate the matches that would be used for that mode assuming order=tff (and field on auto or top).

In terms of speed pc mode is by far the fastest and pcn_ub is the slowest.

Default value is pc_n.

ppsrc

Mark the main input stream as a pre-processed input, and enable the secondary input stream as the clean source to pick the fields from. See the filter introduction for more details. It is similar to the clip2 feature from VFM/TFM.

Default value is 0 (disabled).

field

Set the field to match from. It is recommended to set this to the same value as order unless you experience matching failures with that setting. In certain circumstances changing the field that is used to match from can have a large impact on matching performance. Available values are:
auto

Automatic (same value as order).

bottom

Match from the bottom field.

top

Match from the top field.

Default value is auto.

mchroma

Set whether or not chroma is included during the match comparisons. In most cases it is recommended to leave this enabled. You should set this to 0 only if your clip has bad chroma problems such as heavy rainbowing or other artifacts. Setting this to 0 could also be used to speed things up at the cost of some accuracy.

Default value is 1.

y0

y1

These define an exclusion band which excludes the lines between y0 and y1 from being included in the field matching decision. An exclusion band can be used to ignore subtitles, a logo, or other things that may interfere with the matching. y0 sets the starting scan line and y1 sets the ending line; all lines in between y0 and y1 (including y0 and y1) will be ignored. Setting y0 and y1 to the same value will disable the feature. y0 and y1 defaults to 0.

scthresh

Set the scene change detection threshold as a percentage of maximum change on the luma plane. Good values are in the "[8.0, 14.0]" range. Scene change detection is only relevant in case combmatch=sc. The range for scthresh is "[0.0, 100.0]".

Default value is 12.0.

combmatch

When combatch is not none, "fieldmatch" will take into account the combed scores of matches when deciding what match to use as the final match. Available values are:
none

No final matching based on combed scores.

sc

Combed scores are only used when a scene change is detected.

full

Use combed scores all the time.

Default is sc.

combdbg

Force "fieldmatch" to calculate the combed metrics for certain matches and print them. This setting is known as micout in TFM/VFM vocabulary. Available values are:
none

No forced calculation.

pcn

Force p/c/n calculations.

pcnub

Force p/c/n/u/b calculations.

Default value is none.

cthresh

This is the area combing threshold used for combed frame detection. This essentially controls how "strong" or "visible" combing must be to be detected. Larger values mean combing must be more visible and smaller values mean combing can be less visible or strong and still be detected. Valid settings are from -1 (every pixel will be detected as combed) to 255 (no pixel will be detected as combed). This is basically a pixel difference value. A good range is "[8, 12]".

Default value is 9.

chroma

Sets whether or not chroma is considered in the combed frame decision. Only disable this if your source has chroma problems (rainbowing, etc.) that are causing problems for the combed frame detection with chroma enabled. Actually, using chroma=0 is usually more reliable, except for the case where there is chroma only combing in the source.

Default value is 0.

blockx
blocky

Respectively set the x-axis and y-axis size of the window used during combed frame detection. This has to do with the size of the area in which combpel pixels are required to be detected as combed for a frame to be declared combed. See the combpel parameter description for more info. Possible values are any number that is a power of 2 starting at 4 and going up to 512.

Default value is 16.

combpel

The number of combed pixels inside any of the blocky by blockx size blocks on the frame for the frame to be detected as combed. While cthresh controls how "visible" the combing must be, this setting controls "how much" combing there must be in any localized area (a window defined by the blockx and blocky settings) on the frame. Minimum value is 0 and maximum is "blocky x blockx" (at which point no frames will ever be detected as combed). This setting is known as MI in TFM/VFM vocabulary.

Default value is 80.

p/c/n/u/b meaning

p/c/n

We assume the following telecined stream:

Top fields: 1 2 2 3 4
Bottom fields: 1 2 3 4 4

The numbers correspond to the progressive frame the fields relate to. Here, the first two frames are progressive, the 3rd and 4th are combed, and so on.

When "fieldmatch" is configured to run a matching from bottom (field=bottom) this is how this input stream get transformed:

Input stream:
T 1 2 2 3 4
B 1 2 3 4 4 <-- matching reference
Matches: c c n n c
Output stream:
T 1 2 3 4 4
B 1 2 3 4 4

As a result of the field matching, we can see that some frames get duplicated. To perform a complete inverse telecine, you need to rely on a decimation filter after this operation. See for instance the decimate filter.

The same operation now matching from top fields (field=top) looks like this:

Input stream:
T 1 2 2 3 4 <-- matching reference
B 1 2 3 4 4
Matches: c c p p c
Output stream:
T 1 2 2 3 4
B 1 2 2 3 4

In these examples, we can see what p, c and n mean; basically, they refer to the frame and field of the opposite parity:
*<p matches the field of the opposite parity in the previous frame>
*<c matches the field of the opposite parity in the current frame>
*<n matches the field of the opposite parity in the next frame>

u/b

The u and b matching are a bit special in the sense that they match from the opposite parity flag. In the following examples, we assume that we are currently matching the 2nd frame (Top:2, bottom:2). According to the match, a ’x’ is placed above and below each matched fields.

With bottom matching (field=bottom):

Match: c p n b u
x x x x x
Top 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2
Bottom 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3
x x x x x
Output frames:
2 1 2 2 2
2 2 2 1 3

With top matching (field=top):

Match: c p n b u
x x x x x
Top 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2
Bottom 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3
x x x x x
Output frames:
2 2 2 1 2
2 1 3 2 2

Examples

Simple IVTC of a top field first telecined stream:

fieldmatch=order=tff:combmatch=none, decimate

Advanced IVTC, with fallback on yadif for still combed frames:

fieldmatch=order=tff:combmatch=full, yadif=deint=interlaced, decimate

fieldorder
Transform the field order of the input video.

It accepts the following parameters:
order

The output field order. Valid values are tff for top field first or bff for bottom field first.

The default value is tff.

The transformation is done by shifting the picture content up or down by one line, and filling the remaining line with appropriate picture content. This method is consistent with most broadcast field order converters.

If the input video is not flagged as being interlaced, or it is already flagged as being of the required output field order, then this filter does not alter the incoming video.

It is very useful when converting to or from PAL DV material, which is bottom field first.

For example:

ffmpeg -i in.vob -vf "fieldorder=bff" out.dv

fifo, afifo
Buffer input images and send them when they are requested.

It is mainly useful when auto-inserted by the libavfilter framework.

It does not take parameters.

fillborders
Fill borders of the input video, without changing video stream dimensions. Sometimes video can have garbage at the four edges and you may not want to crop video input to keep size multiple of some number.

This filter accepts the following options:
left

Number of pixels to fill from left border.

right

Number of pixels to fill from right border.

top

Number of pixels to fill from top border.

bottom

Number of pixels to fill from bottom border.

mode

Set fill mode.

It accepts the following values:
smear

fill pixels using outermost pixels

mirror

fill pixels using mirroring (half sample symmetric)

fixed

fill pixels with constant value

reflect

fill pixels using reflecting (whole sample symmetric)

wrap

fill pixels using wrapping

fade

fade pixels to constant value

margins

fill pixels at top and bottom with weighted averages pixels near borders

Default is smear.

color

Set color for pixels in fixed or fade mode. Default is black.

Commands

This filter supports same commands as options. The command accepts the same syntax of the corresponding option.

If the specified expression is not valid, it is kept at its current value.

find_rect
Find a rectangular object in the input video.

The object to search for must be specified as a gray8 image specified with the object option.

For each possible match, a score is computed. If the score reaches the specified threshold, the object is considered found.

If the input video contains multiple instances of the object, the filter will find only one of them.

When an object is found, the following metadata entries are set in the matching frame:
lavfi.rect.w

width of object

lavfi.rect.h

height of object

lavfi.rect.x

x position of object

lavfi.rect.y

y position of object

lavfi.rect.score

match score of the found object

It accepts the following options:
object

Filepath of the object image, needs to be in gray8.

threshold

Detection threshold, expressed as a decimal number in the range 0-1.

A threshold value of 0.01 means only exact matches, a threshold of 0.99 means almost everything matches.

Default value is 0.5.

mipmaps

Number of mipmaps, default is 3.

xmin, ymin, xmax, ymax

Specifies the rectangle in which to search.

discard

Discard frames where object is not detected. Default is disabled.

Examples

Cover a rectangular object by the supplied image of a given video using ffmpeg:

ffmpeg -i file.ts -vf find_rect=newref.pgm,cover_rect=cover.jpg:mode=cover new.mkv

Find the position of an object in each frame using ffprobe and write it to a log file:

ffprobe -f lavfi movie=test.mp4,find_rect=object=object.pgm:threshold=0.3 \
-show_entries frame=pkt_pts_time:frame_tags=lavfi.rect.x,lavfi.rect.y \
-of csv -o find_rect.csv

floodfill
Flood area with values of same pixel components with another values.

It accepts the following options:

x

Set pixel x coordinate.

y

Set pixel y coordinate.

s0

Set source #0 component value.

s1

Set source #1 component value.

s2

Set source #2 component value.

s3

Set source #3 component value.

d0

Set destination #0 component value.

d1

Set destination #1 component value.

d2

Set destination #2 component value.

d3

Set destination #3 component value.

format
Convert the input video to one of the specified pixel formats. Libavfilter will try to pick one that is suitable as input to the next filter.

It accepts the following parameters:
pix_fmts

A ’|’-separated list of pixel format names, such as "pix_fmts=yuv420p|monow|rgb24".

Examples

Convert the input video to the yuv420p format

format=pix_fmts=yuv420p

Convert the input video to any of the formats in the list

format=pix_fmts=yuv420p|yuv444p|yuv410p

fps
Convert the video to specified constant frame rate by duplicating or dropping frames as necessary.

It accepts the following parameters:

fps

The desired output frame rate. It accepts expressions containing the following constants:

source_fps

The input’s frame rate

ntsc

NTSC frame rate of "30000/1001"

pal

PAL frame rate of 25.0

film

Film frame rate of 24.0

ntsc_film

NTSC-film frame rate of "24000/1001"

The default is 25.

start_time

Assume the first PTS should be the given value, in seconds. This allows for padding/trimming at the start of stream. By default, no assumption is made about the first frame’s expected PTS, so no padding or trimming is done. For example, this could be set to 0 to pad the beginning with duplicates of the first frame if a video stream starts after the audio stream or to trim any frames with a negative PTS.

round

Timestamp (PTS) rounding method.

Possible values are:
zero

round towards 0

inf

round away from 0

down

round towards -infinity

up

round towards +infinity

near

round to nearest

The default is "near".

eof_action

Action performed when reading the last frame.

Possible values are:
round

Use same timestamp rounding method as used for other frames.

pass

Pass through last frame if input duration has not been reached yet.

The default is "round".

Alternatively, the options can be specified as a flat string: fps[:start_time[:round]].

See also the setpts filter.

Examples

A typical usage in order to set the fps to 25:

fps=fps=25

Sets the fps to 24, using abbreviation and rounding method to round to nearest:

fps=fps=film:round=near

framepack
Pack two different video streams into a stereoscopic video, setting proper metadata on supported codecs. The two views should have the same size and framerate and processing will stop when the shorter video ends. Please note that you may conveniently adjust view properties with the scale and fps filters.

It accepts the following parameters:
format

The desired packing format. Supported values are:

sbs

The views are next to each other (default).

tab

The views are on top of each other.

lines

The views are packed by line.

columns

The views are packed by column.

frameseq

The views are temporally interleaved.

Some examples:

# Convert left and right views into a frame-sequential video
ffmpeg -i LEFT -i RIGHT -filter_complex framepack=frameseq OUTPUT
# Convert views into a side-by-side video with the same output resolution as the input
ffmpeg -i LEFT -i RIGHT -filter_complex [0:v]scale=w=iw/2[left],[1:v]scale=w=iw/2[right],[left][right]framepack=sbs OUTPUT

framerate
Change the frame rate by interpolating new video output frames from the source frames.

This filter is not designed to function correctly with interlaced media. If you wish to change the frame rate of interlaced media then you are required to deinterlace before this filter and re-interlace after this filter.

A description of the accepted options follows.

fps

Specify the output frames per second. This option can also be specified as a value alone. The default is 50.

interp_start

Specify the start of a range where the output frame will be created as a linear interpolation of two frames. The range is [0-255], the default is 15.

interp_end

Specify the end of a range where the output frame will be created as a linear interpolation of two frames. The range is [0-255], the default is 240.

scene

Specify the level at which a scene change is detected as a value between 0 and 100 to indicate a new scene; a low value reflects a low probability for the current frame to introduce a new scene, while a higher value means the current frame is more likely to be one. The default is 8.2.

flags

Specify flags influencing the filter process.

Available value for flags is:
scene_change_detect, scd

Enable scene change detection using the value of the option scene. This flag is enabled by default.

framestep
Select one frame every N-th frame.

This filter accepts the following option:
step

Select frame after every "step" frames. Allowed values are positive integers higher than 0. Default value is 1.

freezedetect
Detect frozen video.

This filter logs a message and sets frame metadata when it detects that the input video has no significant change in content during a specified duration. Video freeze detection calculates the mean average absolute difference of all the components of video frames and compares it to a noise floor.

The printed times and duration are expressed in seconds. The "lavfi.freezedetect.freeze_start" metadata key is set on the first frame whose timestamp equals or exceeds the detection duration and it contains the timestamp of the first frame of the freeze. The "lavfi.freezedetect.freeze_duration" and "lavfi.freezedetect.freeze_end" metadata keys are set on the first frame after the freeze.

The filter accepts the following options:
noise, n

Set noise tolerance. Can be specified in dB (in case "dB" is appended to the specified value) or as a difference ratio between 0 and 1. Default is -60dB, or 0.001.

duration, d

Set freeze duration until notification (default is 2 seconds).

freezeframes
Freeze video frames.

This filter freezes video frames using frame from 2nd input.

The filter accepts the following options:
first

Set number of first frame from which to start freeze.

last

Set number of last frame from which to end freeze.

replace

Set number of frame from 2nd input which will be used instead of replaced frames.

frei0r
Apply a frei0r effect to the input video.

To enable the compilation of this filter, you need to install the frei0r header and configure FFmpeg with "--enable-frei0r".

It accepts the following parameters:
filter_name

The name of the frei0r effect to load. If the environment variable FREI0R_PATH is defined, the frei0r effect is searched for in each of the directories specified by the colon-separated list in FREI0R_PATH. Otherwise, the standard frei0r paths are searched, in this order: HOME/.frei0r-1/lib/, /usr/local/lib/frei0r-1/, /usr/lib/frei0r-1/.

filter_params

A ’|’-separated list of parameters to pass to the frei0r effect.

A frei0r effect parameter can be a boolean (its value is either "y" or "n"), a double, a color (specified as R/G/B, where R, G, and B are floating point numbers between 0.0 and 1.0, inclusive) or a color description as specified in the "Color" section in the ffmpeg-utils manual, a position (specified as X/Y, where X and Y are floating point numbers) and/or a string.

The number and types of parameters depend on the loaded effect. If an effect parameter is not specified, the default value is set.

Examples

Apply the distort0r effect, setting the first two double parameters:

frei0r=filter_name=distort0r:filter_params=0.5|0.01

Apply the colordistance effect, taking a color as the first parameter:

frei0r=colordistance:0.2/0.3/0.4
frei0r=colordistance:violet
frei0r=colordistance:0x112233

Apply the perspective effect, specifying the top left and top right image positions:

frei0r=perspective:0.2/0.2|0.8/0.2

For more information, see <http://frei0r.dyne.org>

Commands

This filter supports the filter_params option as commands.

fspp
Apply fast and simple postprocessing. It is a faster version of spp.

It splits (I)DCT into horizontal/vertical passes. Unlike the simple post- processing filter, one of them is performed once per block, not per pixel. This allows for much higher speed.

The filter accepts the following options:
quality

Set quality. This option defines the number of levels for averaging. It accepts an integer in the range 4-5. Default value is 4.

qp

Force a constant quantization parameter. It accepts an integer in range 0-63. If not set, the filter will use the QP from the video stream (if available).

strength

Set filter strength. It accepts an integer in range -15 to 32. Lower values mean more details but also more artifacts, while higher values make the image smoother but also blurrier. Default value is 0 − PSNR optimal.

use_bframe_qp

Enable the use of the QP from the B-Frames if set to 1. Using this option may cause flicker since the B-Frames have often larger QP. Default is 0 (not enabled).

gblur
Apply Gaussian blur filter.

The filter accepts the following options:
sigma

Set horizontal sigma, standard deviation of Gaussian blur. Default is 0.5.

steps

Set number of steps for Gaussian approximation. Default is 1.

planes

Set which planes to filter. By default all planes are filtered.

sigmaV

Set vertical sigma, if negative it will be same as "sigma". Default is -1.

Commands

This filter supports same commands as options. The command accepts the same syntax of the corresponding option.

If the specified expression is not valid, it is kept at its current value.

geq
Apply generic equation to each pixel.

The filter accepts the following options:
lum_expr, lum

Set the luma expression.

cb_expr, cb

Set the chrominance blue expression.

cr_expr, cr

Set the chrominance red expression.

alpha_expr, a

Set the alpha expression.

red_expr, r

Set the red expression.

green_expr, g

Set the green expression.

blue_expr, b

Set the blue expression.

The colorspace is selected according to the specified options. If one of the lum_expr, cb_expr, or cr_expr options is specified, the filter will automatically select a YCbCr colorspace. If one of the red_expr, green_expr, or blue_expr options is specified, it will select an RGB colorspace.

If one of the chrominance expression is not defined, it falls back on the other one. If no alpha expression is specified it will evaluate to opaque value. If none of chrominance expressions are specified, they will evaluate to the luma expression.

The expressions can use the following variables and functions:

N

The sequential number of the filtered frame, starting from 0.

X

Y

The coordinates of the current sample.

W

H

The width and height of the image.

SW

SH

Width and height scale depending on the currently filtered plane. It is the ratio between the corresponding luma plane number of pixels and the current plane ones. E.g. for YUV4:2:0 the values are "1,1" for the luma plane, and "0.5,0.5" for chroma planes.

T

Time of the current frame, expressed in seconds.

p(x, y)

Return the value of the pixel at location (x,y) of the current plane.

lum(x, y)

Return the value of the pixel at location (x,y) of the luma plane.

cb(x, y)

Return the value of the pixel at location (x,y) of the blue-difference chroma plane. Return 0 if there is no such plane.

cr(x, y)

Return the value of the pixel at location (x,y) of the red-difference chroma plane. Return 0 if there is no such plane.

r(x, y)
g(x, y)
b(x, y)

Return the value of the pixel at location (x,y) of the red/green/blue component. Return 0 if there is no such component.

alpha(x, y)

Return the value of the pixel at location (x,y) of the alpha plane. Return 0 if there is no such plane.

psum(x,y), lumsum(x, y), cbsum(x,y), crsum(x,y), rsum(x,y), gsum(x,y),
bsum(x,y), alphasum(x,y)

Sum of sample values in the rectangle from (0,0) to (x,y), this allows obtaining sums of samples within a rectangle. See the functions without the sum postfix.

interpolation

Set one of interpolation methods:
nearest, n
bilinear, b

Default is bilinear.

For functions, if x and y are outside the area, the value will be automatically clipped to the closer edge.

Please note that this filter can use multiple threads in which case each slice will have its own expression state. If you want to use only a single expression state because your expressions depend on previous state then you should limit the number of filter threads to 1.

Examples

Flip the image horizontally:

geq=p(W-X\,Y)

Generate a bidimensional sine wave, with angle "PI/3" and a wavelength of 100 pixels:

geq=128 + 100*sin(2*(PI/100)*(cos(PI/3)*(X-50*T) + sin(PI/3)*Y)):128:128

Generate a fancy enigmatic moving light:

nullsrc=s=256x256,geq=random(1)/hypot(X-cos(N*0.07)*W/2-W/2\,Y-sin(N*0.09)*H/2-H/2)^2*1000000*sin(N*0.02):128:128

Generate a quick emboss effect:

format=gray,geq=lum_expr='(p(X,Y)+(256-p(X-4,Y-4)))/2'

Modify RGB components depending on pixel position:

geq=r='X/W*r(X,Y)':g='(1-X/W)*g(X,Y)':b='(H-Y)/H*b(X,Y)'

Create a radial gradient that is the same size as the input (also see the vignette filter):

geq=lum=255*gauss((X/W-0.5)*3)*gauss((Y/H-0.5)*3)/gauss(0)/gauss(0),format=gray

gradfun
Fix the banding artifacts that are sometimes introduced into nearly flat regions by truncation to 8-bit color depth. Interpolate the gradients that should go where the bands are, and dither them.

It is designed for playback only. Do not use it prior to lossy compression, because compression tends to lose the dither and bring back the bands.

It accepts the following parameters:
strength

The maximum amount by which the filter will change any one pixel. This is also the threshold for detecting nearly flat regions. Acceptable values range from .51 to 64; the default value is 1.2. Out-of-range values will be clipped to the valid range.

radius

The neighborhood to fit the gradient to. A larger radius makes for smoother gradients, but also prevents the filter from modifying the pixels near detailed regions. Acceptable values are 8-32; the default value is 16. Out-of-range values will be clipped to the valid range.

Alternatively, the options can be specified as a flat string: strength[:radius]

Examples

Apply the filter with a 3.5 strength and radius of 8:

gradfun=3.5:8

Specify radius, omitting the strength (which will fall-back to the default value):

gradfun=radius=8

graphmonitor
Show various filtergraph stats.

With this filter one can debug complete filtergraph. Especially issues with links filling with queued frames.

The filter accepts the following options:
size, s

Set video output size. Default is hd720.

opacity, o

Set video opacity. Default is 0.9. Allowed range is from 0 to 1.

mode, m

Set output mode flags.

Available values for flags are:
full

No any filtering. Default.

compact

Show only filters with queued frames.

nozero

Show only filters with non-zero stats.

noeof

Show only filters with non-eof stat.

nodisabled

Show only filters that are enabled in timeline.

flags, f

Set flags which enable which stats are shown in video.

Available values for flags are:
none

All flags turned off.

all

All flags turned on.

queue

Display number of queued frames in each link.

frame_count_in

Display number of frames taken from filter.

frame_count_out

Display number of frames given out from filter.

frame_count_delta

Display delta number of frames between above two values.

pts

Display current filtered frame pts.

pts_delta

Display pts delta between current and previous frame.

time

Display current filtered frame time.

time_delta

Display time delta between current and previous frame.

timebase

Display time base for filter link.

format

Display used format for filter link.

size

Display video size or number of audio channels in case of audio used by filter link.

rate

Display video frame rate or sample rate in case of audio used by filter link.

eof

Display link output status.

sample_count_in

Display number of samples taken from filter.

sample_count_out

Display number of samples given out from filter.

sample_count_delta

Display delta number of samples between above two values.

disabled

Show the timeline filter status.

rate, r

Set upper limit for video rate of output stream, Default value is 25. This guarantee that output video frame rate will not be higher than this value.

grayworld
A color constancy filter that applies color correction based on the grayworld assumption

See: <https://www.researchgate.net/publication/275213614_A_New_Color_Correction_Method_for_Underwater_Imaging>

The algorithm uses linear light, so input data should be linearized beforehand (and possibly correctly tagged).

ffmpeg -i INPUT -vf zscale=transfer=linear,grayworld,zscale=transfer=bt709,format=yuv420p OUTPUT

greyedge
A color constancy variation filter which estimates scene illumination via grey edge algorithm and corrects the scene colors accordingly.

See: <https://staff.science.uva.nl/th.gevers/pub/GeversTIP07.pdf>

The filter accepts the following options:
difford

The order of differentiation to be applied on the scene. Must be chosen in the range [0,2] and default value is 1.

minknorm

The Minkowski parameter to be used for calculating the Minkowski distance. Must be chosen in the range [0,20] and default value is 1. Set to 0 for getting max value instead of calculating Minkowski distance.

sigma

The standard deviation of Gaussian blur to be applied on the scene. Must be chosen in the range [0,1024.0] and default value = 1. floor( sigma * break_off_sigma(3) ) can’t be equal to 0 if difford is greater than 0.

Examples

Grey Edge:

greyedge=difford=1:minknorm=5:sigma=2

Max Edge:

greyedge=difford=1:minknorm=0:sigma=2

guided
Apply guided filter for edge-preserving smoothing, dehazing and so on.

The filter accepts the following options:
radius

Set the box radius in pixels. Allowed range is 1 to 20. Default is 3.

eps

Set regularization parameter (with square). Allowed range is 0 to 1. Default is 0.01.

mode

Set filter mode. Can be "basic" or "fast". Default is "basic".

sub

Set subsampling ratio for "fast" mode. Range is 2 to 64. Default is 4. No subsampling occurs in "basic" mode.

guidance

Set guidance mode. Can be "off" or "on". Default is "off". If "off", single input is required. If "on", two inputs of the same resolution and pixel format are required. The second input serves as the guidance.

planes

Set planes to filter. Default is first only.

Commands

This filter supports the all above options as commands.

Examples

Edge-preserving smoothing with guided filter:

ffmpeg -i in.png -vf guided out.png

Dehazing, structure-transferring filtering, detail enhancement with guided filter. For the generation of guidance image, refer to paper "Guided Image Filtering". See: <http://kaiminghe.com/publications/pami12guidedfilter.pdf>.

ffmpeg -i in.png -i guidance.png -filter_complex guided=guidance=on out.png

haldclut
Apply a Hald CLUT to a video stream.

First input is the video stream to process, and second one is the Hald CLUT. The Hald CLUT input can be a simple picture or a complete video stream.

The filter accepts the following options:
clut

Set which CLUT video frames will be processed from second input stream, can be first or all. Default is all.

shortest

Force termination when the shortest input terminates. Default is 0.

repeatlast

Continue applying the last CLUT after the end of the stream. A value of 0 disable the filter after the last frame of the CLUT is reached. Default is 1.

"haldclut" also has the same interpolation options as lut3d (both filters share the same internals).

This filter also supports the framesync options.

More information about the Hald CLUT can be found on Eskil Steenberg’s website (Hald CLUT author) at <http://www.quelsolaar.com/technology/clut.html>.

Commands

This filter supports the "interp" option as commands.

Workflow examples

Hald CLUT video stream

Generate an identity Hald CLUT stream altered with various effects:

ffmpeg -f lavfi -i B<haldclutsrc>=8 -vf "hue=H=2*PI*t:s=sin(2*PI*t)+1, curves=cross_process" -t 10 -c:v ffv1 clut.nut

Note: make sure you use a lossless codec.

Then use it with "haldclut" to apply it on some random stream:

ffmpeg -f lavfi -i mandelbrot -i clut.nut -filter_complex '[0][1] haldclut' -t 20 mandelclut.mkv

The Hald CLUT will be applied to the 10 first seconds (duration of clut.nut), then the latest picture of that CLUT stream will be applied to the remaining frames of the "mandelbrot" stream.

Hald CLUT with preview

A Hald CLUT is supposed to be a squared image of "Level*Level*Level" by "Level*Level*Level" pixels. For a given Hald CLUT, FFmpeg will select the biggest possible square starting at the top left of the picture. The remaining padding pixels (bottom or right) will be ignored. This area can be used to add a preview of the Hald CLUT.

Typically, the following generated Hald CLUT will be supported by the "haldclut" filter:

ffmpeg -f lavfi -i B<haldclutsrc>=8 -vf "
pad=iw+320 [padded_clut];
smptebars=s=320x256, split [a][b];
[padded_clut][a] overlay=W-320:h, curves=color_negative [main];
[main][b] overlay=W-320" -frames:v 1 clut.png

It contains the original and a preview of the effect of the CLUT: SMPTE color bars are displayed on the right-top, and below the same color bars processed by the color changes.

Then, the effect of this Hald CLUT can be visualized with:

ffplay input.mkv -vf "movie=clut.png, [in] haldclut"

hflip
Flip the input video horizontally.

For example, to horizontally flip the input video with ffmpeg:

ffmpeg -i in.avi -vf "hflip" out.avi

histeq
This filter applies a global color histogram equalization on a per-frame basis.

It can be used to correct video that has a compressed range of pixel intensities. The filter redistributes the pixel intensities to equalize their distribution across the intensity range. It may be viewed as an "automatically adjusting contrast filter". This filter is useful only for correcting degraded or poorly captured source video.

The filter accepts the following options:
strength

Determine the amount of equalization to be applied. As the strength is reduced, the distribution of pixel intensities more-and-more approaches that of the input frame. The value must be a float number in the range [0,1] and defaults to 0.200.

intensity

Set the maximum intensity that can generated and scale the output values appropriately. The strength should be set as desired and then the intensity can be limited if needed to avoid washing-out. The value must be a float number in the range [0,1] and defaults to 0.210.

antibanding

Set the antibanding level. If enabled the filter will randomly vary the luminance of output pixels by a small amount to avoid banding of the histogram. Possible values are "none", "weak" or "strong". It defaults to "none".

histogram
Compute and draw a color distribution histogram for the input video.

The computed histogram is a representation of the color component distribution in an image.

Standard histogram displays the color components distribution in an image. Displays color graph for each color component. Shows distribution of the Y, U, V, A or R, G, B components, depending on input format, in the current frame. Below each graph a color component scale meter is shown.

The filter accepts the following options:
level_height

Set height of level. Default value is 200. Allowed range is [50, 2048].

scale_height

Set height of color scale. Default value is 12. Allowed range is [0, 40].

display_mode

Set display mode. It accepts the following values:
stack

Per color component graphs are placed below each other.

parade

Per color component graphs are placed side by side.

overlay

Presents information identical to that in the "parade", except that the graphs representing color components are superimposed directly over one another.

Default is "stack".

levels_mode

Set mode. Can be either "linear", or "logarithmic". Default is "linear".

components

Set what color components to display. Default is 7.

fgopacity

Set foreground opacity. Default is 0.7.

bgopacity

Set background opacity. Default is 0.5.

colors_mode

Set colors mode. It accepts the following values:
whiteonblack
blackonwhite
whiteongray
blackongray
coloronblack
coloronwhite
colorongray
blackoncolor
whiteoncolor
grayoncolor

Default is "whiteonblack".

Examples

Calculate and draw histogram:

ffplay -i input -vf histogram

hqdn3d
This is a high precision/quality 3d denoise filter. It aims to reduce image noise, producing smooth images and making still images really still. It should enhance compressibility.

It accepts the following optional parameters:
luma_spatial

A non-negative floating point number which specifies spatial luma strength. It defaults to 4.0.

chroma_spatial

A non-negative floating point number which specifies spatial chroma strength. It defaults to 3.0*luma_spatial/4.0.

luma_tmp

A floating point number which specifies luma temporal strength. It defaults to 6.0*luma_spatial/4.0.

chroma_tmp

A floating point number which specifies chroma temporal strength. It defaults to luma_tmp*chroma_spatial/luma_spatial.

Commands

This filter supports same commands as options. The command accepts the same syntax of the corresponding option.

If the specified expression is not valid, it is kept at its current value.

hwdownload
Download hardware frames to system memory.

The input must be in hardware frames, and the output a non-hardware format. Not all formats will be supported on the output - it may be necessary to insert an additional format filter immediately following in the graph to get the output in a supported format.

hwmap
Map hardware frames to system memory or to another device.

This filter has several different modes of operation; which one is used depends on the input and output formats:

Hardware frame input, normal frame output

Map the input frames to system memory and pass them to the output. If the original hardware frame is later required (for example, after overlaying something else on part of it), the hwmap filter can be used again in the next mode to retrieve it.

Normal frame input, hardware frame output

If the input is actually a software-mapped hardware frame, then unmap it - that is, return the original hardware frame.

Otherwise, a device must be provided. Create new hardware surfaces on that device for the output, then map them back to the software format at the input and give those frames to the preceding filter. This will then act like the hwupload filter, but may be able to avoid an additional copy when the input is already in a compatible format.

Hardware frame input and output

A device must be supplied for the output, either directly or with the derive_device option. The input and output devices must be of different types and compatible - the exact meaning of this is system-dependent, but typically it means that they must refer to the same underlying hardware context (for example, refer to the same graphics card).

If the input frames were originally created on the output device, then unmap to retrieve the original frames.

Otherwise, map the frames to the output device - create new hardware frames on the output corresponding to the frames on the input.

The following additional parameters are accepted:
mode

Set the frame mapping mode. Some combination of:
read

The mapped frame should be readable.

write

The mapped frame should be writeable.

overwrite

The mapping will always overwrite the entire frame.

This may improve performance in some cases, as the original contents of the frame need not be loaded.

direct

The mapping must not involve any copying.

Indirect mappings to copies of frames are created in some cases where either direct mapping is not possible or it would have unexpected properties. Setting this flag ensures that the mapping is direct and will fail if that is not possible.

Defaults to read+write if not specified.

derive_device type

Rather than using the device supplied at initialisation, instead derive a new device of type type from the device the input frames exist on.

reverse

In a hardware to hardware mapping, map in reverse - create frames in the sink and map them back to the source. This may be necessary in some cases where a mapping in one direction is required but only the opposite direction is supported by the devices being used.

This option is dangerous - it may break the preceding filter in undefined ways if there are any additional constraints on that filter’s output. Do not use it without fully understanding the implications of its use.

hwupload
Upload system memory frames to hardware surfaces.

The device to upload to must be supplied when the filter is initialised. If using ffmpeg, select the appropriate device with the -filter_hw_device option or with the derive_device option. The input and output devices must be of different types and compatible - the exact meaning of this is system-dependent, but typically it means that they must refer to the same underlying hardware context (for example, refer to the same graphics card).

The following additional parameters are accepted:
derive_device
type

Rather than using the device supplied at initialisation, instead derive a new device of type type from the device the input frames exist on.

hwupload_cuda
Upload system memory frames to a CUDA device.

It accepts the following optional parameters:
device

The number of the CUDA device to use

hqx
Apply a high-quality magnification filter designed for pixel art. This filter was originally created by Maxim Stepin.

It accepts the following option:

n

Set the scaling dimension: 2 for "hq2x", 3 for "hq3x" and 4 for "hq4x". Default is 3.

hstack
Stack input videos horizontally.

All streams must be of same pixel format and of same height.

Note that this filter is faster than using overlay and pad filter to create same output.

The filter accepts the following option:
inputs

Set number of input streams. Default is 2.

shortest

If set to 1, force the output to terminate when the shortest input terminates. Default value is 0.

hsvhold
Turns a certain HSV range into gray values.

This filter measures color difference between set HSV color in options and ones measured in video stream. Depending on options, output colors can be changed to be gray or not.

The filter accepts the following options:

hue

Set the hue value which will be used in color difference calculation. Allowed range is from -360 to 360. Default value is 0.

sat

Set the saturation value which will be used in color difference calculation. Allowed range is from -1 to 1. Default value is 0.

val

Set the value which will be used in color difference calculation. Allowed range is from -1 to 1. Default value is 0.

similarity

Set similarity percentage with the key color. Allowed range is from 0 to 1. Default value is 0.01.

0.00001 matches only the exact key color, while 1.0 matches everything.

blend

Blend percentage. Allowed range is from 0 to 1. Default value is 0.

0.0 makes pixels either fully gray, or not gray at all.

Higher values result in more gray pixels, with a higher gray pixel the more similar the pixels color is to the key color.

hsvkey
Turns a certain HSV range into transparency.

This filter measures color difference between set HSV color in options and ones measured in video stream. Depending on options, output colors can be changed to transparent by adding alpha channel.

The filter accepts the following options:

hue

Set the hue value which will be used in color difference calculation. Allowed range is from -360 to 360. Default value is 0.

sat

Set the saturation value which will be used in color difference calculation. Allowed range is from -1 to 1. Default value is 0.

val

Set the value which will be used in color difference calculation. Allowed range is from -1 to 1. Default value is 0.

similarity

Set similarity percentage with the key color. Allowed range is from 0 to 1. Default value is 0.01.

0.00001 matches only the exact key color, while 1.0 matches everything.

blend

Blend percentage. Allowed range is from 0 to 1. Default value is 0.

0.0 makes pixels either fully transparent, or not transparent at all.

Higher values result in semi-transparent pixels, with a higher transparency the more similar the pixels color is to the key color.

hue
Modify the hue and/or the saturation of the input.

It accepts the following parameters:

h

Specify the hue angle as a number of degrees. It accepts an expression, and defaults to "0".

s

Specify the saturation in the [-10,10] range. It accepts an expression and defaults to "1".

H

Specify the hue angle as a number of radians. It accepts an expression, and defaults to "0".

b

Specify the brightness in the [-10,10] range. It accepts an expression and defaults to "0".

h and H are mutually exclusive, and can’t be specified at the same time.

The b, h, H and s option values are expressions containing the following constants:

n

frame count of the input frame starting from 0

pts

presentation timestamp of the input frame expressed in time base units

r

frame rate of the input video, NAN if the input frame rate is unknown

t

timestamp expressed in seconds, NAN if the input timestamp is unknown

tb

time base of the input video

Examples

Set the hue to 90 degrees and the saturation to 1.0:

hue=h=90:s=1

Same command but expressing the hue in radians:

hue=H=PI/2:s=1

Rotate hue and make the saturation swing between 0 and 2 over a period of 1 second:

hue="H=2*PI*t: s=sin(2*PI*t)+1"

Apply a 3 seconds saturation fade-in effect starting at 0:

hue="s=min(t/3\,1)"

The general fade-in expression can be written as:

hue="s=min(0\, max((t-START)/DURATION\, 1))"

Apply a 3 seconds saturation fade-out effect starting at 5 seconds:

hue="s=max(0\, min(1\, (8-t)/3))"

The general fade-out expression can be written as:

hue="s=max(0\, min(1\, (START+DURATION-t)/DURATION))"

Commands

This filter supports the following commands:

b

s

h

H

Modify the hue and/or the saturation and/or brightness of the input video. The command accepts the same syntax of the corresponding option.

If the specified expression is not valid, it is kept at its current value.

huesaturation
Apply hue-saturation-intensity adjustments to input video stream.

This filter operates in RGB colorspace.

This filter accepts the following options:

hue

Set the hue shift in degrees to apply. Default is 0. Allowed range is from -180 to 180.

saturation

Set the saturation shift. Default is 0. Allowed range is from -1 to 1.

intensity

Set the intensity shift. Default is 0. Allowed range is from -1 to 1.

colors

Set which primary and complementary colors are going to be adjusted. This options is set by providing one or multiple values. This can select multiple colors at once. By default all colors are selected.

r

Adjust reds.

y

Adjust yellows.

g

Adjust greens.

c

Adjust cyans.

b

Adjust blues.

m

Adjust magentas.

a

Adjust all colors.

strength

Set strength of filtering. Allowed range is from 0 to 100. Default value is 1.

rw, gw, bw

Set weight for each RGB component. Allowed range is from 0 to 1. By default is set to 0.333, 0.334, 0.333. Those options are used in saturation and lightess processing.

lightness

Set preserving lightness, by default is disabled. Adjusting hues can change lightness from original RGB triplet, with this option enabled lightness is kept at same value.

hysteresis
Grow first stream into second stream by connecting components. This makes it possible to build more robust edge masks.

This filter accepts the following options:
planes

Set which planes will be processed as bitmap, unprocessed planes will be copied from first stream. By default value 0xf, all planes will be processed.

threshold

Set threshold which is used in filtering. If pixel component value is higher than this value filter algorithm for connecting components is activated. By default value is 0.

The "hysteresis" filter also supports the framesync options.

iccdetect
Detect the colorspace from an embedded ICC profile (if present), and update the frame’s tags accordingly.

This filter accepts the following options:
force

If true, the frame’s existing colorspace tags will always be overridden by values detected from an ICC profile. Otherwise, they will only be assigned if they contain "unknown". Enabled by default.

iccgen
Generate ICC profiles and attach them to frames.

This filter accepts the following options:
color_primaries
color_trc

Configure the colorspace that the ICC profile will be generated for. The default value of "auto" infers the value from the input frame’s metadata, defaulting to BT.709/sRGB as appropriate.

See the setparams filter for a list of possible values, but note that "unknown" are not valid values for this filter.

force

If true, an ICC profile will be generated even if it would overwrite an already existing ICC profile. Disabled by default.

identity
Obtain the identity score between two input videos.

This filter takes two input videos.

Both input videos must have the same resolution and pixel format for this filter to work correctly. Also it assumes that both inputs have the same number of frames, which are compared one by one.

The obtained per component, average, min and max identity score is printed through the logging system.

The filter stores the calculated identity scores of each frame in frame metadata.

This filter also supports the framesync options.

In the below example the input file main.mpg being processed is compared with the reference file ref.mpg.

ffmpeg -i main.mpg -i ref.mpg -lavfi identity -f null -

idet
Detect video interlacing type.

This filter tries to detect if the input frames are interlaced, progressive, top or bottom field first. It will also try to detect fields that are repeated between adjacent frames (a sign of telecine).

Single frame detection considers only immediately adjacent frames when classifying each frame. Multiple frame detection incorporates the classification history of previous frames.

The filter will log these metadata values:
single.current_frame

Detected type of current frame using single-frame detection. One of: ’’tff’’ (top field first), ’’bff’’ (bottom field first), ’’progressive’’, or ’’undetermined’’

single.tff

Cumulative number of frames detected as top field first using single-frame detection.

multiple.tff

Cumulative number of frames detected as top field first using multiple-frame detection.

single.bff

Cumulative number of frames detected as bottom field first using single-frame detection.

multiple.current_frame

Detected type of current frame using multiple-frame detection. One of: ’’tff’’ (top field first), ’’bff’’ (bottom field first), ’’progressive’’, or ’’undetermined’’

multiple.bff

Cumulative number of frames detected as bottom field first using multiple-frame detection.

single.progressive

Cumulative number of frames detected as progressive using single-frame detection.

multiple.progressive

Cumulative number of frames detected as progressive using multiple-frame detection.

single.undetermined

Cumulative number of frames that could not be classified using single-frame detection.

multiple.undetermined

Cumulative number of frames that could not be classified using multiple-frame detection.

repeated.current_frame

Which field in the current frame is repeated from the last. One of ’’neither’’, ’’top’’, or ’’bottom’’.

repeated.neither

Cumulative number of frames with no repeated field.

repeated.top

Cumulative number of frames with the top field repeated from the previous frame’s top field.

repeated.bottom

Cumulative number of frames with the bottom field repeated from the previous frame’s bottom field.

The filter accepts the following options:
intl_thres

Set interlacing threshold.

prog_thres

Set progressive threshold.

rep_thres

Threshold for repeated field detection.

half_life

Number of frames after which a given frame’s contribution to the statistics is halved (i.e., it contributes only 0.5 to its classification). The default of 0 means that all frames seen are given full weight of 1.0 forever.

analyze_interlaced_flag

When this is not 0 then idet will use the specified number of frames to determine if the interlaced flag is accurate, it will not count undetermined frames. If the flag is found to be accurate it will be used without any further computations, if it is found to be inaccurate it will be cleared without any further computations. This allows inserting the idet filter as a low computational method to clean up the interlaced flag

il
Deinterleave or interleave fields.

This filter allows one to process interlaced images fields without deinterlacing them. Deinterleaving splits the input frame into 2 fields (so called half pictures). Odd lines are moved to the top half of the output image, even lines to the bottom half. You can process (filter) them independently and then re-interleave them.

The filter accepts the following options:
luma_mode, l
chroma_mode, c
alpha_mode, a

Available values for luma_mode, chroma_mode and alpha_mode are:
none

Do nothing.

deinterleave, d

Deinterleave fields, placing one above the other.

interleave, i

Interleave fields. Reverse the effect of deinterleaving.

Default value is "none".

luma_swap, ls
chroma_swap, cs
alpha_swap, as

Swap luma/chroma/alpha fields. Exchange even & odd lines. Default value is 0.

Commands

This filter supports the all above options as commands.

inflate
Apply inflate effect to the video.

This filter replaces the pixel by the local(3x3) average by taking into account only values higher than the pixel.

It accepts the following options:
threshold0
threshold1
threshold2
threshold3

Limit the maximum change for each plane, default is 65535. If 0, plane will remain unchanged.

Commands

This filter supports the all above options as commands.

interlace
Simple interlacing filter from progressive contents. This interleaves upper (or lower) lines from odd frames with lower (or upper) lines from even frames, halving the frame rate and preserving image height.

Original Original New Frame
Frame 'j' Frame 'j+1' (tff)
========== =========== ==================
Line 0 --------------------> Frame 'j' Line 0
Line 1 Line 1 ----> Frame 'j+1' Line 1
Line 2 ---------------------> Frame 'j' Line 2
Line 3 Line 3 ----> Frame 'j+1' Line 3
... ... ...
New Frame + 1 will be generated by Frame 'j+2' and Frame 'j+3' and so on

It accepts the following optional parameters:
scan

This determines whether the interlaced frame is taken from the even (tff - default) or odd (bff) lines of the progressive frame.

lowpass

Vertical lowpass filter to avoid twitter interlacing and reduce moire patterns.
0, off

Disable vertical lowpass filter

1, linear

Enable linear filter (default)

2, complex

Enable complex filter. This will slightly less reduce twitter and moire but better retain detail and subjective sharpness impression.

kerndeint
Deinterlace input video by applying Donald Graft’s adaptive kernel deinterling. Work on interlaced parts of a video to produce progressive frames.

The description of the accepted parameters follows.
thresh

Set the threshold which affects the filter’s tolerance when determining if a pixel line must be processed. It must be an integer in the range [0,255] and defaults to 10. A value of 0 will result in applying the process on every pixels.

map

Paint pixels exceeding the threshold value to white if set to 1. Default is 0.

order

Set the fields order. Swap fields if set to 1, leave fields alone if 0. Default is 0.

sharp

Enable additional sharpening if set to 1. Default is 0.

twoway

Enable twoway sharpening if set to 1. Default is 0.

Examples

Apply default values:

kerndeint=thresh=10:map=0:order=0:sharp=0:twoway=0

Enable additional sharpening:

kerndeint=sharp=1

Paint processed pixels in white:

kerndeint=map=1

kirsch
Apply kirsch operator to input video stream.

The filter accepts the following option:
planes

Set which planes will be processed, unprocessed planes will be copied. By default value 0xf, all planes will be processed.

scale

Set value which will be multiplied with filtered result.

delta

Set value which will be added to filtered result.

Commands

This filter supports the all above options as commands.

lagfun
Slowly update darker pixels.

This filter makes short flashes of light appear longer. This filter accepts the following options:
decay

Set factor for decaying. Default is .95. Allowed range is from 0 to 1.

planes

Set which planes to filter. Default is all. Allowed range is from 0 to 15.

Commands

This filter supports the all above options as commands.

lenscorrection
Correct radial lens distortion

This filter can be used to correct for radial distortion as can result from the use of wide angle lenses, and thereby re-rectify the image. To find the right parameters one can use tools available for example as part of opencv or simply trial-and-error. To use opencv use the calibration sample (under samples/cpp) from the opencv sources and extract the k1 and k2 coefficients from the resulting matrix.

Note that effectively the same filter is available in the open-source tools Krita and Digikam from the KDE project.

In contrast to the vignette filter, which can also be used to compensate lens errors, this filter corrects the distortion of the image, whereas vignette corrects the brightness distribution, so you may want to use both filters together in certain cases, though you will have to take care of ordering, i.e. whether vignetting should be applied before or after lens correction.

Options

The filter accepts the following options:

cx

Relative x-coordinate of the focal point of the image, and thereby the center of the distortion. This value has a range [0,1] and is expressed as fractions of the image width. Default is 0.5.

cy

Relative y-coordinate of the focal point of the image, and thereby the center of the distortion. This value has a range [0,1] and is expressed as fractions of the image height. Default is 0.5.

k1

Coefficient of the quadratic correction term. This value has a range [-1,1]. 0 means no correction. Default is 0.

k2

Coefficient of the double quadratic correction term. This value has a range [-1,1]. 0 means no correction. Default is 0.

i

Set interpolation type. Can be "nearest" or "bilinear". Default is "nearest".

fc

Specify the color of the unmapped pixels. For the syntax of this option, check the "Color" section in the ffmpeg-utils manual. Default color is "black@0".

The formula that generates the correction is:

r_src = r_tgt * (1 + k1 * (r_tgt / r_0)^2 + k2 * (r_tgt / r_0)^4)

where r_0 is halve of the image diagonal and r_src and r_tgt are the distances from the focal point in the source and target images, respectively.

Commands

This filter supports the all above options as commands.

lensfun
Apply lens correction via the lensfun library (<http://lensfun.sourceforge.net/>).

The "lensfun" filter requires the camera make, camera model, and lens model to apply the lens correction. The filter will load the lensfun database and query it to find the corresponding camera and lens entries in the database. As long as these entries can be found with the given options, the filter can perform corrections on frames. Note that incomplete strings will result in the filter choosing the best match with the given options, and the filter will output the chosen camera and lens models (logged with level "info"). You must provide the make, camera model, and lens model as they are required.

To obtain a list of available makes and models, leave out one or both of "make" and "model" options. The filter will send the full list to the log with level "INFO". The first column is the make and the second column is the model. To obtain a list of available lenses, set any values for make and model and leave out the "lens_model" option. The filter will send the full list of lenses in the log with level "INFO". The ffmpeg tool will exit after the list is printed.

The filter accepts the following options:
make

The make of the camera (for example, "Canon"). This option is required.

model

The model of the camera (for example, "Canon EOS 100D"). This option is required.

lens_model

The model of the lens (for example, "Canon EF-S 18-55mm f/3.5-5.6 IS STM"). This option is required.

db_path

The full path to the lens database folder. If not set, the filter will attempt to load the database from the install path when the library was built. Default is unset.

mode

The type of correction to apply. The following values are valid options:
vignetting

Enables fixing lens vignetting.

geometry

Enables fixing lens geometry. This is the default.

subpixel

Enables fixing chromatic aberrations.

vig_geo

Enables fixing lens vignetting and lens geometry.

vig_subpixel

Enables fixing lens vignetting and chromatic aberrations.

distortion

Enables fixing both lens geometry and chromatic aberrations.

all

Enables all possible corrections.

focal_length

The focal length of the image/video (zoom; expected constant for video). For example, a 18--55mm lens has focal length range of [18--55], so a value in that range should be chosen when using that lens. Default 18.

aperture

The aperture of the image/video (expected constant for video). Note that aperture is only used for vignetting correction. Default 3.5.

focus_distance

The focus distance of the image/video (expected constant for video). Note that focus distance is only used for vignetting and only slightly affects the vignetting correction process. If unknown, leave it at the default value (which is 1000).

scale

The scale factor which is applied after transformation. After correction the video is no longer necessarily rectangular. This parameter controls how much of the resulting image is visible. The value 0 means that a value will be chosen automatically such that there is little or no unmapped area in the output image. 1.0 means that no additional scaling is done. Lower values may result in more of the corrected image being visible, while higher values may avoid unmapped areas in the output.

target_geometry

The target geometry of the output image/video. The following values are valid options:
rectilinear (default)
fisheye
panoramic
equirectangular
fisheye_orthographic
fisheye_stereographic
fisheye_equisolid
fisheye_thoby

reverse

Apply the reverse of image correction (instead of correcting distortion, apply it).

interpolation

The type of interpolation used when correcting distortion. The following values are valid options:
nearest
linear (default)
lanczos

Examples

Apply lens correction with make "Canon", camera model "Canon EOS 100D", and lens model "Canon EF-S 18-55mm f/3.5-5.6 IS STM" with focal length of "18" and aperture of "8.0".

ffmpeg -i input.mov -vf lensfun=make=Canon:model="Canon EOS 100D":lens_model="Canon EF-S 18-55mm f/3.5-5.6 IS STM":focal_length=18:aperture=8 -c:v h264 -b:v 8000k output.mov

Apply the same as before, but only for the first 5 seconds of video.

ffmpeg -i input.mov -vf lensfun=make=Canon:model="Canon EOS 100D":lens_model="Canon EF-S 18-55mm f/3.5-5.6 IS STM":focal_length=18:aperture=8:enable='lte(t\,5)' -c:v h264 -b:v 8000k output.mov

libplacebo
Flexible GPU-accelerated processing filter based on libplacebo (<https://code.videolan.org/videolan/libplacebo>).

Options

The options for this filter are divided into the following sections:

Output mode

These options control the overall output mode. By default, libplacebo will try to preserve the source colorimetry and size as best as it can, but it will apply any embedded film grain, dolby vision metadata or anamorphic SAR present in source frames.
inputs

Set the number of inputs. This can be used, alongside the "idx" variable, to allow placing/blending multiple inputs inside the output frame. This effectively enables functionality similar to hstack, overlay, etc.

w

h

Set the output video dimension expression. Default values are "iw" and "ih".

Allows for the same expressions as the scale filter.

crop_x
crop_y

Set the input crop x/y expressions, default values are "(iw-cw)/2" and "(ih-ch)/2".

crop_w
crop_h

Set the input crop width/height expressions, default values are "iw" and "ih".

pos_x
pos_y

Set the output placement x/y expressions, default values are "(ow-pw)/2" and "(oh-ph)/2".

pos_w
pos_h

Set the output placement width/height expressions, default values are "ow" and "oh".

fps

Set the output frame rate. This can be rational, e.g. "60000/1001". If set to the special string "none" (the default), input timestamps will instead be passed through to the output unmodified. Otherwise, the input video frames will be interpolated as necessary to rescale the video to the specified target framerate, in a manner as determined by the frame_mixer option.

format

Set the output format override. If unset (the default), frames will be output in the same format as the respective input frames. Otherwise, format conversion will be performed.

force_original_aspect_ratio
force_divisible_by

Work the same as the identical scale filter options.

normalize_sar

If enabled, output frames will always have a pixel aspect ratio of 1:1. This will introduce additional padding/cropping as necessary. If disabled (the default), any aspect ratio mismatches, including those from e.g. anamorphic video sources, are forwarded to the output pixel aspect ratio.

pad_crop_ratio

Specifies a ratio (between 0.0 and 1.0) between padding and cropping when the input aspect ratio does not match the output aspect ratio and normalize_sar is in effect. The default of 0.0 always pads the content with black borders, while a value of 1.0 always crops off parts of the content. Intermediate values are possible, leading to a mix of the two approaches.

fillcolor

Set the color used to fill the output area not covered by the output image, for example as a result of normalize_sar. For the general syntax of this option, check the "Color" section in the ffmpeg-utils manual. Defaults to "black".

corner_rounding

Render frames with rounded corners. The value, given as a float ranging from 0.0 to 1.0, indicates the relative degree of rounding, from fully square to fully circular. In other words, it gives the radius divided by half the smaller side length. Defaults to 0.0.

extra_opts

Pass extra libplacebo internal configuration options. These can be specified as a list of key=value pairs separated by ’:’. The following example shows how to configure a custom filter kernel ("EWA LanczosSharp") and use it to double the input image resolution:

-vf "libplacebo=w=iw*2:h=ih*2:extra_opts='upscaler=custom\:upscaler_preset=ewa_lanczos\:upscaler_blur=0.9812505644269356'"

colorspace
color_primaries
color_trc
range

Configure the colorspace that output frames will be delivered in. The default value of "auto" outputs frames in the same format as the input frames, leading to no change. For any other value, conversion will be performed.

See the setparams filter for a list of possible values.

apply_filmgrain

Apply film grain (e.g. AV1 or H.274) if present in source frames, and strip it from the output. Enabled by default.

apply_dolbyvision

Apply Dolby Vision RPU metadata if present in source frames, and strip it from the output. Enabled by default. Note that Dolby Vision will always output BT.2020+PQ, overriding the usual input frame metadata. These will also be picked as the values of "auto" for the respective frame output options.

In addition to the expression constants documented for the scale filter, the crop_w, crop_h, crop_x, crop_y, pos_w, pos_h, pos_x and pos_y options can also contain the following constants:
in_idx, idx

The (0-based) numeric index of the currently active input stream.

crop_w, cw
crop_h, ch

The computed values of crop_w and crop_h.

pos_w, pw
pos_h, ph

The computed values of pos_w and pos_h.

in_t, t

The input frame timestamp, in seconds. NAN if input timestamp is unknown.

out_t, ot

The input frame timestamp, in seconds. NAN if input timestamp is unknown.

n

The input frame number, starting with 0.

Scaling

The options in this section control how libplacebo performs upscaling and (if necessary) downscaling. Note that libplacebo will always internally operate on 4:4:4 content, so any sub-sampled chroma formats such as "yuv420p" will necessarily be upsampled and downsampled as part of the rendering process. That means scaling might be in effect even if the source and destination resolution are the same.
upscaler
downscaler

Configure the filter kernel used for upscaling and downscaling. The respective defaults are "spline36" and "mitchell". For a full list of possible values, pass "help" to these options. The most important values are:
none

Forces the use of built-in GPU texture sampling (typically bilinear). Extremely fast but poor quality, especially when downscaling.

bilinear

Bilinear interpolation. Can generally be done for free on GPUs, except when doing so would lead to aliasing. Fast and low quality.

nearest

Nearest-neighbour interpolation. Sharp but highly aliasing.

oversample

Algorithm that looks visually similar to nearest-neighbour interpolation but tries to preserve pixel aspect ratio. Good for pixel art, since it results in minimal distortion of the artistic appearance.

lanczos

Standard sinc-sinc interpolation kernel.

spline36

Cubic spline approximation of lanczos. No difference in performance, but has very slightly less ringing.

ewa_lanczos

Elliptically weighted average version of lanczos, based on a jinc-sinc kernel. This is also popularly referred to as just "Jinc scaling". Slow but very high quality.

gaussian

Gaussian kernel. Has certain ideal mathematical properties, but subjectively very blurry.

mitchell

Cubic BC spline with parameters recommended by Mitchell and Netravali. Very little ringing.

frame_mixer

Controls the kernel used for mixing frames temporally. The default value is "none", which disables frame mixing. For a full list of possible values, pass "help" to this option. The most important values are:
none

Disables frame mixing, giving a result equivalent to "nearest neighbour" semantics.

oversample

Oversamples the input video to create a "Smooth Motion"-type effect: if an output frame would exactly fall on the transition between two video frames, it is blended according to the relative overlap. This is the recommended option whenever preserving the original subjective appearance is desired.

mitchell_clamp

Larger filter kernel that smoothly interpolates multiple frames in a manner designed to eliminate ringing and other artefacts as much as possible. This is the recommended option wherever maximum visual smoothness is desired.

linear

Linear blend/fade between frames. Especially useful for constructing e.g. slideshows.

lut_entries

Configures the size of scaler LUTs, ranging from 1 to 256. The default of 0 will pick libplacebo’s internal default, typically 64.

antiringing

Enables anti-ringing (for non-EWA filters). The value (between 0.0 and 1.0) configures the strength of the anti-ringing algorithm. May increase aliasing if set too high. Disabled by default.

sigmoid

Enable sigmoidal compression during upscaling. Reduces ringing slightly. Enabled by default.

Debanding

Libplacebo comes with a built-in debanding filter that is good at counteracting many common sources of banding and blocking. Turning this on is highly recommended whenever quality is desired.
deband

Enable (fast) debanding algorithm. Disabled by default.

deband_iterations

Number of deband iterations of the debanding algorithm. Each iteration is performed with progressively increased radius (and diminished threshold). Recommended values are in the range 1 to 4. Defaults to 1.

deband_threshold

Debanding filter strength. Higher numbers lead to more aggressive debanding. Defaults to 4.0.

deband_radius

Debanding filter radius. A higher radius is better for slow gradients, while a lower radius is better for steep gradients. Defaults to 16.0.

deband_grain

Amount of extra output grain to add. Helps hide imperfections. Defaults to 6.0.

Color adjustment

A collection of subjective color controls. Not very rigorous, so the exact effect will vary somewhat depending on the input primaries and colorspace.
brightness

Brightness boost, between -1.0 and 1.0. Defaults to 0.0.

contrast

Contrast gain, between 0.0 and 16.0. Defaults to 1.0.

saturation

Saturation gain, between 0.0 and 16.0. Defaults to 1.0.

hue

Hue shift in radians, between -3.14 and 3.14. Defaults to 0.0. This will rotate the UV subvector, defaulting to BT.709 coefficients for RGB inputs.

gamma

Gamma adjustment, between 0.0 and 16.0. Defaults to 1.0.

cones

Cone model to use for color blindness simulation. Accepts any combination of "l", "m" and "s". Here are some examples:

m

Deuteranomaly / deuteranopia (affecting 3%-4% of the population)

l

Protanomaly / protanopia (affecting 1%-2% of the population)

l+m

Monochromacy (very rare)

l+m+s

Achromatopsy (complete loss of daytime vision, extremely rare)

cone-strength

Gain factor for the cones specified by "cones", between 0.0 and 10.0. A value of 1.0 results in no change to color vision. A value of 0.0 (the default) simulates complete loss of those cones. Values above 1.0 result in exaggerating the differences between cones, which may help compensate for reduced color vision.

Peak detection

To help deal with sources that only have static HDR10 metadata (or no tagging whatsoever), libplacebo uses its own internal frame analysis compute shader to analyze source frames and adapt the tone mapping function in realtime. If this is too slow, or if exactly reproducible frame-perfect results are needed, it’s recommended to turn this feature off.
peak_detect

Enable HDR peak detection. Ignores static MaxCLL/MaxFALL values in favor of dynamic detection from the input. Note that the detected values do not get written back to the output frames, they merely guide the internal tone mapping process. Enabled by default.

smoothing_period

Peak detection smoothing period, between 0.0 and 1000.0. Higher values result in peak detection becoming less responsive to changes in the input. Defaults to 100.0.

minimum_peak

Lower bound on the detected peak (relative to SDR white), between 0.0 and 100.0. Defaults to 1.0.

scene_threshold_low
scene_threshold_high

Lower and upper thresholds for scene change detection. Expressed in a logarithmic scale between 0.0 and 100.0. Default to 5.5 and 10.0, respectively. Setting either to a negative value disables this functionality.

percentile

Which percentile of the frame brightness histogram to use as the source peak for tone-mapping. Defaults to 99.995, a fairly conservative value. Setting this to 100.0 disables frame histogram measurement and instead uses the true peak brightness for tone-mapping.

Tone mapping

The options in this section control how libplacebo performs tone-mapping and gamut-mapping when dealing with mismatches between wide-gamut or HDR content. In general, libplacebo relies on accurate source tagging and mastering display gamut information to produce the best results.
gamut_mode

How to handle out-of-gamut colors that can occur as a result of colorimetric gamut mapping.
clip

Do nothing, simply clip out-of-range colors to the RGB volume. Low quality but extremely fast.

perceptual

Perceptually soft-clip colors to the gamut volume. This is the default.

relative

Relative colorimetric hard-clip. Similar to "perceptual" but without the soft knee.

saturation

Saturation mapping, maps primaries directly to primaries in RGB space. Not recommended except for artificial computer graphics for which a bright, saturated display is desired.

absolute

Absolute colorimetric hard-clip. Performs no adjustment of the white point.

desaturate

Hard-desaturates out-of-gamut colors towards white, while preserving the luminance. Has a tendency to distort the visual appearance of bright objects.

darken

Linearly reduces content brightness to preserves saturated details, followed by clipping the remaining out-of-gamut colors.

warn

Highlight out-of-gamut pixels (by inverting/marking them).

linear

Linearly reduces chromaticity of the entire image to make it fit within the target color volume. Be careful when using this on BT.2020 sources without proper mastering metadata, as doing so will lead to excessive desaturation.

tonemapping

Tone-mapping algorithm to use. Available values are:
auto

Automatic selection based on internal heuristics. This is the default.

clip

Performs no tone-mapping, just clips out-of-range colors. Retains perfect color accuracy for in-range colors but completely destroys out-of-range information. Does not perform any black point adaptation. Not configurable.

st2094-40

EETF from SMPTE ST 2094-40 Annex B, which applies the Bezier curves from HDR10+ dynamic metadata based on Bezier curves to perform tone-mapping. The OOTF used is adjusted based on the ratio between the targeted and actual display peak luminances.

st2094-10

EETF from SMPTE ST 2094-10 Annex B.2, which takes into account the input signal average luminance in addition to the maximum/minimum. The configurable contrast parameter influences the slope of the linear output segment, defaulting to 1.0 for no increase/decrease in contrast. Note that this does not currently include the subjective gain/offset/gamma controls defined in Annex B.3.

bt.2390

EETF from the ITU-R Report BT.2390, a hermite spline roll-off with linear segment. The knee point offset is configurable. Note that this parameter defaults to 1.0, rather than the value of 0.5 from the ITU-R spec.

bt.2446a

EETF from ITU-R Report BT.2446, method A. Designed for well-mastered HDR sources. Can be used for both forward and inverse tone mapping. Not configurable.

spline

Simple spline consisting of two polynomials, joined by a single pivot point. The parameter gives the pivot point (in PQ space), defaulting to 0.30. Can be used for both forward and inverse tone mapping.

reinhard

Simple non-linear, global tone mapping algorithm. The parameter specifies the local contrast coefficient at the display peak. Essentially, a parameter of 0.5 implies that the reference white will be about half as bright as when clipping. Defaults to 0.5, which results in the simplest formulation of this function.

mobius

Generalization of the reinhard tone mapping algorithm to support an additional linear slope near black. The tone mapping parameter indicates the trade-off between the linear section and the non-linear section. Essentially, for a given parameter x, every color value below x will be mapped linearly, while higher values get non-linearly tone-mapped. Values near 1.0 make this curve behave like "clip", while values near 0.0 make this curve behave like "reinhard". The default value is 0.3, which provides a good balance between colorimetric accuracy and preserving out-of-gamut details.

hable

Piece-wise, filmic tone-mapping algorithm developed by John Hable for use in Uncharted 2, inspired by a similar tone-mapping algorithm used by Kodak. Popularized by its use in video games with HDR rendering. Preserves both dark and bright details very well, but comes with the drawback of changing the average brightness quite significantly. This is sort of similar to "reinhard" with parameter 0.24.

gamma

Fits a gamma (power) function to transfer between the source and target color spaces, effectively resulting in a perceptual hard-knee joining two roughly linear sections. This preserves details at all scales fairly accurately, but can result in an image with a muted or dull appearance. The parameter is used as the cutoff point, defaulting to 0.5.

linear

Linearly stretches the input range to the output range, in PQ space. This will preserve all details accurately, but results in a significantly different average brightness. Can be used for inverse tone-mapping in addition to regular tone-mapping. The parameter can be used as an additional linear gain coefficient (defaulting to 1.0).

tonemapping_param

For tunable tone mapping functions, this parameter can be used to fine-tune the curve behavior. Refer to the documentation of "tonemapping". The default value of 0.0 is replaced by the curve’s preferred default setting.

inverse_tonemapping

If enabled, this filter will also attempt stretching SDR signals to fill HDR output color volumes. Disabled by default.

tonemapping_lut_size

Size of the tone-mapping LUT, between 2 and 1024. Defaults to 256. Note that this figure is squared when combined with "peak_detect".

contrast_recovery

Contrast recovery strength. If set to a value above 0.0, the source image will be divided into high-frequency and low-frequency components, and a portion of the high-frequency image is added back onto the tone-mapped output. May cause excessive ringing artifacts for some HDR sources, but can improve the subjective sharpness and detail left over in the image after tone-mapping. Defaults to 0.30.

contrast_smoothness

Contrast recovery lowpass kernel size. Defaults to 3.5. Increasing or decreasing this will affect the visual appearance substantially. Has no effect when "contrast_recovery" is disabled.

Dithering

By default, libplacebo will dither whenever necessary, which includes rendering to any integer format below 16-bit precision. It’s recommended to always leave this on, since not doing so may result in visible banding in the output, even if the "debanding" filter is enabled. If maximum performance is needed, use "ordered_fixed" instead of disabling dithering.
dithering

Dithering method to use. Accepts the following values:
none

Disables dithering completely. May result in visible banding.

blue

Dither with pseudo-blue noise. This is the default.

ordered

Tunable ordered dither pattern.

ordered_fixed

Faster ordered dither with a fixed size of 6. Texture-less.

white

Dither with white noise. Texture-less.

dither_lut_size

Dither LUT size, as log base2 between 1 and 8. Defaults to 6, corresponding to a LUT size of "64x64".

dither_temporal

Enables temporal dithering. Disabled by default.

Custom shaders

libplacebo supports a number of custom shaders based on the mpv .hook GLSL syntax. A collection of such shaders can be found here: <https://github.com/mpv-player/mpv/wiki/User-Scripts#user-shaders>

A full description of the mpv shader format is beyond the scope of this section, but a summary can be found here: <https://mpv.io/manual/master/#options-glsl-shader>
custom_shader_path

Specifies a path to a custom shader file to load at runtime.

custom_shader_bin

Specifies a complete custom shader as a raw string.

Debugging / performance

All of the options in this section default off. They may be of assistance when attempting to squeeze the maximum performance at the cost of quality.
skip_aa

Disable anti-aliasing when downscaling.

polar_cutoff

Truncate polar (EWA) scaler kernels below this absolute magnitude, between 0.0 and 1.0.

disable_linear

Disable linear light scaling.

disable_builtin

Disable built-in GPU sampling (forces LUT).

disable_fbos

Forcibly disable FBOs, resulting in loss of almost all functionality, but offering the maximum possible speed.

Commands

This filter supports almost all of the above options as commands.

Examples

Tone-map input to standard gamut BT.709 output:

libplacebo=colorspace=bt709:color_primaries=bt709:color_trc=bt709:range=tv

Rescale input to fit into standard 1080p, with high quality scaling:

libplacebo=w=1920:h=1080:force_original_aspect_ratio=decrease:normalize_sar=true:upscaler=ewa_lanczos:downscaler=ewa_lanczos

Interpolate low FPS / VFR input to smoothed constant 60 fps output:

libplacebo=fps=60:frame_mixer=mitchell_clamp

Convert input to standard sRGB JPEG:

libplacebo=format=yuv420p:colorspace=bt470bg:color_primaries=bt709:color_trc=iec61966-2-1:range=pc

Use higher quality debanding settings:

libplacebo=deband=true:deband_iterations=3:deband_radius=8:deband_threshold=6

Run this filter on the CPU, on systems with Mesa installed (and with the most expensive options disabled):

ffmpeg ... -init_hw_device vulkan:llvmpipe ... -vf libplacebo=upscaler=none:downscaler=none:peak_detect=false

Suppress CPU-based AV1/H.274 film grain application in the decoder, in favor of doing it with this filter. Note that this is only a gain if the frames are either already on the GPU, or if you’re using libplacebo for other purposes, since otherwise the VRAM roundtrip will more than offset any expected speedup.

ffmpeg -export_side_data +film_grain ... -vf libplacebo=apply_filmgrain=true

Interop with VAAPI hwdec to avoid round-tripping through RAM:

ffmpeg -init_hw_device vulkan -hwaccel vaapi -hwaccel_output_format vaapi ... -vf libplacebo

libvmaf
Calulate the VMAF (Video Multi-Method Assessment Fusion) score for a reference/distorted pair of input videos.

The first input is the distorted video, and the second input is the reference video.

The obtained VMAF score is printed through the logging system.

It requires Netflix’s vmaf library (libvmaf) as a pre-requisite. After installing the library it can be enabled using: "./configure --enable-libvmaf".

The filter has following options:
model

A ’|’ delimited list of vmaf models. Each model can be configured with a number of parameters. Default value: "version=vmaf_v0.6.1"

feature

A ’|’ delimited list of features. Each feature can be configured with a number of parameters.

log_path

Set the file path to be used to store log files.

log_fmt

Set the format of the log file (xml, json, csv, or sub).

n_threads

Set number of threads to be used when initializing libvmaf. Default value: 0, no threads.

n_subsample

Set frame subsampling interval to be used.

This filter also supports the framesync options.

Examples

In the examples below, a distorted video distorted.mpg is compared with a reference file reference.mpg.

Basic usage:

ffmpeg -i distorted.mpg -i reference.mpg -lavfi libvmaf=log_path=output.xml -f null -

Example with multiple models:

ffmpeg -i distorted.mpg -i reference.mpg -lavfi libvmaf='model=version=vmaf_v0.6.1\\:name=vmaf|version=vmaf_v0.6.1neg\\:name=vmaf_neg' -f null -

Example with multiple addtional features:

ffmpeg -i distorted.mpg -i reference.mpg -lavfi libvmaf='feature=name=psnr|name=ciede' -f null -

Example with options and different containers:

ffmpeg -i distorted.mpg -i reference.mkv -lavfi "[0:v]settb=AVTB,setpts=PTS-STARTPTS[main];[1:v]settb=AVTB,setpts=PTS-STARTPTS[ref];[main][ref]libvmaf=log_fmt=json:log_path=output.json" -f null -

libvmaf_cuda
This is the CUDA variant of the libvmaf filter. It only accepts CUDA frames.

It requires Netflix’s vmaf library (libvmaf) as a pre-requisite. After installing the library it can be enabled using: "./configure --enable-nonfree --enable-ffnvcodec --enable-libvmaf".

Examples

Basic usage showing CUVID hardware decoding and CUDA scaling with scale_cuda:

ffmpeg \
-hwaccel cuda -hwaccel_output_format cuda -codec:v av1_cuvid -i dis.obu \
-hwaccel cuda -hwaccel_output_format cuda -codec:v av1_cuvid -i ref.obu \
-filter_complex "
[0:v]scale_cuda=format=yuv420p[ref]; \
[1:v]scale_cuda=format=yuv420p[dis]; \
[dis][ref]libvmaf_cuda=log_fmt=json:log_path=output.json
" \
-f null -

limitdiff
Apply limited difference filter using second and optionally third video stream.

The filter accepts the following options:
threshold

Set the threshold to use when allowing certain differences between video streams. Any absolute difference value lower or exact than this threshold will pick pixel components from first video stream.

elasticity

Set the elasticity of soft thresholding when processing video streams. This value multiplied with first one sets second threshold. Any absolute difference value greater or exact than second threshold will pick pixel components from second video stream. For values between those two threshold linear interpolation between first and second video stream will be used.

reference

Enable the reference (third) video stream processing. By default is disabled. If set, this video stream will be used for calculating absolute difference with first video stream.

planes

Specify which planes will be processed. Defaults to all available.

Commands

This filter supports the all above options as commands except option reference.

limiter
Limits the pixel components values to the specified range [min, max].

The filter accepts the following options:

min

Lower bound. Defaults to the lowest allowed value for the input.

max

Upper bound. Defaults to the highest allowed value for the input.

planes

Specify which planes will be processed. Defaults to all available.

Commands

This filter supports the all above options as commands.

loop
Loop video frames.

The filter accepts the following options:
loop

Set the number of loops. Setting this value to -1 will result in infinite loops. Default is 0.

size

Set maximal size in number of frames. Default is 0.

start

Set first frame of loop. Default is 0.

time

Set the time of loop start in seconds. Only used if option named start is set to -1.

Examples

Loop single first frame infinitely:

loop=loop=-1:size=1:start=0

Loop single first frame 10 times:

loop=loop=10:size=1:start=0

Loop 10 first frames 5 times:

loop=loop=5:size=10:start=0

lut1d
Apply a 1D LUT to an input video.

The filter accepts the following options:
file

Set the 1D LUT file name.

Currently supported formats:
cube

Iridas

csp

cineSpace

interp

Select interpolation mode.

Available values are:
nearest

Use values from the nearest defined point.

linear

Interpolate values using the linear interpolation.

cosine

Interpolate values using the cosine interpolation.

cubic

Interpolate values using the cubic interpolation.

spline

Interpolate values using the spline interpolation.

Commands

This filter supports the all above options as commands.

lut3d
Apply a 3D LUT to an input video.

The filter accepts the following options:
file

Set the 3D LUT file name.

Currently supported formats:

3dl

AfterEffects

cube

Iridas

dat

DaVinci

m3d

Pandora

csp

cineSpace

interp

Select interpolation mode.

Available values are:
nearest

Use values from the nearest defined point.

trilinear

Interpolate values using the 8 points defining a cube.

tetrahedral

Interpolate values using a tetrahedron.

pyramid

Interpolate values using a pyramid.

prism

Interpolate values using a prism.

Commands

This filter supports the "interp" option as commands.

lumakey
Turn certain luma values into transparency.

The filter accepts the following options:
threshold

Set the luma which will be used as base for transparency. Default value is 0.

tolerance

Set the range of luma values to be keyed out. Default value is 0.01.

softness

Set the range of softness. Default value is 0. Use this to control gradual transition from zero to full transparency.

Commands

This filter supports same commands as options. The command accepts the same syntax of the corresponding option.

If the specified expression is not valid, it is kept at its current value.

lut, lutrgb, lutyuv
Compute a look-up table for binding each pixel component input value to an output value, and apply it to the input video.

lutyuv applies a lookup table to a YUV input video, lutrgb to an RGB input video.

These filters accept the following parameters:

c0

set first pixel component expression

c1

set second pixel component expression

c2

set third pixel component expression

c3

set fourth pixel component expression, corresponds to the alpha component

r

set red component expression

g

set green component expression

b

set blue component expression

a

alpha component expression

y

set Y/luma component expression

u

set U/Cb component expression

v

set V/Cr component expression

Each of them specifies the expression to use for computing the lookup table for the corresponding pixel component values.

The exact component associated to each of the c* options depends on the format in input.

The lut filter requires either YUV or RGB pixel formats in input, lutrgb requires RGB pixel formats in input, and lutyuv requires YUV.

The expressions can contain the following constants and functions:

w

h

The input width and height.

val

The input value for the pixel component.

clipval

The input value, clipped to the minval-maxval range.

maxval

The maximum value for the pixel component.

minval

The minimum value for the pixel component.

negval

The negated value for the pixel component value, clipped to the minval-maxval range; it corresponds to the expression "maxval-clipval+minval".

clip(val)

The computed value in val, clipped to the minval-maxval range.

gammaval(gamma)

The computed gamma correction value of the pixel component value, clipped to the minval-maxval range. It corresponds to the expression "pow((clipval-minval)/(maxval-minval)\,gamma)*(maxval-minval)+minval"

All expressions default to "clipval".

Commands

This filter supports same commands as options.

Examples

Negate input video:

lutrgb="r=maxval+minval-val:g=maxval+minval-val:b=maxval+minval-val"
lutyuv="y=maxval+minval-val:u=maxval+minval-val:v=maxval+minval-val"

The above is the same as:

lutrgb="r=negval:g=negval:b=negval"
lutyuv="y=negval:u=negval:v=negval"

Negate luma:

lutyuv=y=negval

Remove chroma components, turning the video into a graytone image:

lutyuv="u=128:v=128"

Apply a luma burning effect:

lutyuv="y=2*val"

Remove green and blue components:

lutrgb="g=0:b=0"

Set a constant alpha channel value on input:

format=rgba,lutrgb=a="maxval-minval/2"

Correct luma gamma by a factor of 0.5:

lutyuv=y=gammaval(0.5)

Discard least significant bits of luma:

lutyuv=y='bitand(val, 128+64+32)'

Technicolor like effect:

lutyuv=u='(val-maxval/2)*2+maxval/2':v='(val-maxval/2)*2+maxval/2'

lut2, tlut2
The "lut2" filter takes two input streams and outputs one stream.

The "tlut2" (time lut2) filter takes two consecutive frames from one single stream.

This filter accepts the following parameters:

c0

set first pixel component expression

c1

set second pixel component expression

c2

set third pixel component expression

c3

set fourth pixel component expression, corresponds to the alpha component

d

set output bit depth, only available for "lut2" filter. By default is 0, which means bit depth is automatically picked from first input format.

The "lut2" filter also supports the framesync options.

Each of them specifies the expression to use for computing the lookup table for the corresponding pixel component values.

The exact component associated to each of the c* options depends on the format in inputs.

The expressions can contain the following constants:

w

h

The input width and height.

x

The first input value for the pixel component.

y

The second input value for the pixel component.

bdx

The first input video bit depth.

bdy

The second input video bit depth.

All expressions default to "x".

Commands

This filter supports the all above options as commands except option "d".

Examples

Highlight differences between two RGB video streams:

lut2='ifnot(x-y,0,pow(2,bdx)-1):ifnot(x-y,0,pow(2,bdx)-1):ifnot(x-y,0,pow(2,bdx)-1)'

Highlight differences between two YUV video streams:

lut2='ifnot(x-y,0,pow(2,bdx)-1):ifnot(x-y,pow(2,bdx-1),pow(2,bdx)-1):ifnot(x-y,pow(2,bdx-1),pow(2,bdx)-1)'

Show max difference between two video streams:

lut2='if(lt(x,y),0,if(gt(x,y),pow(2,bdx)-1,pow(2,bdx-1))):if(lt(x,y),0,if(gt(x,y),pow(2,bdx)-1,pow(2,bdx-1))):if(lt(x,y),0,if(gt(x,y),pow(2,bdx)-1,pow(2,bdx-1)))'

maskedclamp
Clamp the first input stream with the second input and third input stream.

Returns the value of first stream to be between second input stream - "undershoot" and third input stream + "overshoot".

This filter accepts the following options:
undershoot

Default value is 0.

overshoot

Default value is 0.

planes

Set which planes will be processed as bitmap, unprocessed planes will be copied from first stream. By default value 0xf, all planes will be processed.

Commands

This filter supports the all above options as commands.

maskedmax
Merge the second and third input stream into output stream using absolute differences between second input stream and first input stream and absolute difference between third input stream and first input stream. The picked value will be from second input stream if second absolute difference is greater than first one or from third input stream otherwise.

This filter accepts the following options:
planes

Set which planes will be processed as bitmap, unprocessed planes will be copied from first stream. By default value 0xf, all planes will be processed.

Commands

This filter supports the all above options as commands.

maskedmerge
Merge the first input stream with the second input stream using per pixel weights in the third input stream.

A value of 0 in the third stream pixel component means that pixel component from first stream is returned unchanged, while maximum value (eg. 255 for 8-bit videos) means that pixel component from second stream is returned unchanged. Intermediate values define the amount of merging between both input stream’s pixel components.

This filter accepts the following options:
planes

Set which planes will be processed as bitmap, unprocessed planes will be copied from first stream. By default value 0xf, all planes will be processed.

Commands

This filter supports the all above options as commands.

maskedmin
Merge the second and third input stream into output stream using absolute differences between second input stream and first input stream and absolute difference between third input stream and first input stream. The picked value will be from second input stream if second absolute difference is less than first one or from third input stream otherwise.

This filter accepts the following options:
planes

Set which planes will be processed as bitmap, unprocessed planes will be copied from first stream. By default value 0xf, all planes will be processed.

Commands

This filter supports the all above options as commands.

maskedthreshold
Pick pixels comparing absolute difference of two video streams with fixed threshold.

If absolute difference between pixel component of first and second video stream is equal or lower than user supplied threshold than pixel component from first video stream is picked, otherwise pixel component from second video stream is picked.

This filter accepts the following options:
threshold

Set threshold used when picking pixels from absolute difference from two input video streams.

planes

Set which planes will be processed as bitmap, unprocessed planes will be copied from second stream. By default value 0xf, all planes will be processed.

mode

Set mode of filter operation. Can be "abs" or "diff". Default is "abs".

Commands

This filter supports the all above options as commands.

maskfun
Create mask from input video.

For example it is useful to create motion masks after "tblend" filter.

This filter accepts the following options:

low

Set low threshold. Any pixel component lower or exact than this value will be set to 0.

high

Set high threshold. Any pixel component higher than this value will be set to max value allowed for current pixel format.

planes

Set planes to filter, by default all available planes are filtered.

fill

Fill all frame pixels with this value.

sum

Set max average pixel value for frame. If sum of all pixel components is higher that this average, output frame will be completely filled with value set by fill option. Typically useful for scene changes when used in combination with "tblend" filter.

Commands

This filter supports the all above options as commands.

mcdeint
Apply motion-compensation deinterlacing.

It needs one field per frame as input and must thus be used together with yadif=1/3 or equivalent.

This filter accepts the following options:
mode

Set the deinterlacing mode.

It accepts one of the following values:
fast
medium
slow

use iterative motion estimation

extra_slow

like slow, but use multiple reference frames.

Default value is fast.

parity

Set the picture field parity assumed for the input video. It must be one of the following values:
0, tff

assume top field first

1, bff

assume bottom field first

Default value is bff.

qp

Set per-block quantization parameter (QP) used by the internal encoder.

Higher values should result in a smoother motion vector field but less optimal individual vectors. Default value is 1.

median
Pick median pixel from certain rectangle defined by radius.

This filter accepts the following options:
radius

Set horizontal radius size. Default value is 1. Allowed range is integer from 1 to 127.

planes

Set which planes to process. Default is 15, which is all available planes.

radiusV

Set vertical radius size. Default value is 0. Allowed range is integer from 0 to 127. If it is 0, value will be picked from horizontal "radius" option.

percentile

Set median percentile. Default value is 0.5. Default value of 0.5 will pick always median values, while 0 will pick minimum values, and 1 maximum values.

Commands

This filter supports same commands as options. The command accepts the same syntax of the corresponding option.

If the specified expression is not valid, it is kept at its current value.

mergeplanes
Merge color channel components from several video streams.

The filter accepts up to 4 input streams, and merge selected input planes to the output video.

This filter accepts the following options:
mapping

Set input to output plane mapping. Default is 0.

The mappings is specified as a bitmap. It should be specified as a hexadecimal number in the form 0xAa[Bb[Cc[Dd]]]. ’Aa’ describes the mapping for the first plane of the output stream. ’A’ sets the number of the input stream to use (from 0 to 3), and ’a’ the plane number of the corresponding input to use (from 0 to 3). The rest of the mappings is similar, ’Bb’ describes the mapping for the output stream second plane, ’Cc’ describes the mapping for the output stream third plane and ’Dd’ describes the mapping for the output stream fourth plane.

format

Set output pixel format. Default is "yuva444p".

map0s
map1s
map2s
map3s

Set input to output stream mapping for output Nth plane. Default is 0.

map0p
map1p
map2p
map3p

Set input to output plane mapping for output Nth plane. Default is 0.

Examples

Merge three gray video streams of same width and height into single video stream:

[a0][a1][a2]mergeplanes=0x001020:yuv444p

Merge 1st yuv444p stream and 2nd gray video stream into yuva444p video stream:

[a0][a1]mergeplanes=0x00010210:yuva444p

Swap Y and A plane in yuva444p stream:

format=yuva444p,mergeplanes=0x03010200:yuva444p

Swap U and V plane in yuv420p stream:

format=yuv420p,mergeplanes=0x000201:yuv420p

Cast a rgb24 clip to yuv444p:

format=rgb24,mergeplanes=0x000102:yuv444p

mestimate
Estimate and export motion vectors using block matching algorithms. Motion vectors are stored in frame side data to be used by other filters.

This filter accepts the following options:
method

Specify the motion estimation method. Accepts one of the following values:

esa

Exhaustive search algorithm.

tss

Three step search algorithm.

tdls

Two dimensional logarithmic search algorithm.

ntss

New three step search algorithm.

fss

Four step search algorithm.

ds

Diamond search algorithm.

hexbs

Hexagon-based search algorithm.

epzs

Enhanced predictive zonal search algorithm.

umh

Uneven multi-hexagon search algorithm.

Default value is esa.

mb_size

Macroblock size. Default 16.

search_param

Search parameter. Default 7.

midequalizer
Apply Midway Image Equalization effect using two video streams.

Midway Image Equalization adjusts a pair of images to have the same histogram, while maintaining their dynamics as much as possible. It’s useful for e.g. matching exposures from a pair of stereo cameras.

This filter has two inputs and one output, which must be of same pixel format, but may be of different sizes. The output of filter is first input adjusted with midway histogram of both inputs.

This filter accepts the following option:
planes

Set which planes to process. Default is 15, which is all available planes.

minterpolate
Convert the video to specified frame rate using motion interpolation.

This filter accepts the following options:

fps

Specify the output frame rate. This can be rational e.g. "60000/1001". Frames are dropped if fps is lower than source fps. Default 60.

mi_mode

Motion interpolation mode. Following values are accepted:

dup

Duplicate previous or next frame for interpolating new ones.

blend

Blend source frames. Interpolated frame is mean of previous and next frames.

mci

Motion compensated interpolation. Following options are effective when this mode is selected:

mc_mode

Motion compensation mode. Following values are accepted:
obmc

Overlapped block motion compensation.

aobmc

Adaptive overlapped block motion compensation. Window weighting coefficients are controlled adaptively according to the reliabilities of the neighboring motion vectors to reduce oversmoothing.

Default mode is obmc.

me_mode

Motion estimation mode. Following values are accepted:
bidir

Bidirectional motion estimation. Motion vectors are estimated for each source frame in both forward and backward directions.

bilat

Bilateral motion estimation. Motion vectors are estimated directly for interpolated frame.

Default mode is bilat.

me

The algorithm to be used for motion estimation. Following values are accepted:

esa

Exhaustive search algorithm.

tss

Three step search algorithm.

tdls

Two dimensional logarithmic search algorithm.

ntss

New three step search algorithm.

fss

Four step search algorithm.

ds

Diamond search algorithm.

hexbs

Hexagon-based search algorithm.

epzs

Enhanced predictive zonal search algorithm.

umh

Uneven multi-hexagon search algorithm.

Default algorithm is epzs.

mb_size

Macroblock size. Default 16.

search_param

Motion estimation search parameter. Default 32.

vsbmc

Enable variable-size block motion compensation. Motion estimation is applied with smaller block sizes at object boundaries in order to make the them less blur. Default is 0 (disabled).

scd

Scene change detection method. Scene change leads motion vectors to be in random direction. Scene change detection replace interpolated frames by duplicate ones. May not be needed for other modes. Following values are accepted:

none

Disable scene change detection.

fdiff

Frame difference. Corresponding pixel values are compared and if it satisfies scd_threshold scene change is detected.

Default method is fdiff.

scd_threshold

Scene change detection threshold. Default is 10..

mix
Mix several video input streams into one video stream.

A description of the accepted options follows.
inputs

The number of inputs. If unspecified, it defaults to 2.

weights

Specify weight of each input video stream as sequence. Each weight is separated by space. If number of weights is smaller than number of frames last specified weight will be used for all remaining unset weights.

scale

Specify scale, if it is set it will be multiplied with sum of each weight multiplied with pixel values to give final destination pixel value. By default scale is auto scaled to sum of weights.

planes

Set which planes to filter. Default is all. Allowed range is from 0 to 15.

duration

Specify how end of stream is determined.
longest

The duration of the longest input. (default)

shortest

The duration of the shortest input.

first

The duration of the first input.

Commands

This filter supports the following commands:
weights
scale
planes

Syntax is same as option with same name.

monochrome
Convert video to gray using custom color filter.

A description of the accepted options follows.

cb

Set the chroma blue spot. Allowed range is from -1 to 1. Default value is 0.

cr

Set the chroma red spot. Allowed range is from -1 to 1. Default value is 0.

size

Set the color filter size. Allowed range is from .1 to 10. Default value is 1.

high

Set the highlights strength. Allowed range is from 0 to 1. Default value is 0.

Commands

This filter supports the all above options as commands.

morpho
This filter allows to apply main morphological grayscale transforms, erode and dilate with arbitrary structures set in second input stream.

Unlike naive implementation and much slower performance in erosion and dilation filters, when speed is critical "morpho" filter should be used instead.

A description of accepted options follows,
mode

Set morphological transform to apply, can be:
erode
dilate
open
close
gradient
tophat
blackhat

Default is "erode".

planes

Set planes to filter, by default all planes except alpha are filtered.

structure

Set which structure video frames will be processed from second input stream, can be first or all. Default is all.

The "morpho" filter also supports the framesync options.

Commands

This filter supports same commands as options.

mpdecimate
Drop frames that do not differ greatly from the previous frame in order to reduce frame rate.

The main use of this filter is for very-low-bitrate encoding (e.g. streaming over dialup modem), but it could in theory be used for fixing movies that were inverse-telecined incorrectly.

A description of the accepted options follows.

max

Set the maximum number of consecutive frames which can be dropped (if positive), or the minimum interval between dropped frames (if negative). If the value is 0, the frame is dropped disregarding the number of previous sequentially dropped frames.

Default value is 0.

keep

Set the maximum number of consecutive similar frames to ignore before to start dropping them. If the value is 0, the frame is dropped disregarding the number of previous sequentially similar frames.

Default value is 0.

hi

lo

frac

Set the dropping threshold values.

Values for hi and lo are for 8x8 pixel blocks and represent actual pixel value differences, so a threshold of 64 corresponds to 1 unit of difference for each pixel, or the same spread out differently over the block.

A frame is a candidate for dropping if no 8x8 blocks differ by more than a threshold of hi, and if no more than frac blocks (1 meaning the whole image) differ by more than a threshold of lo.

Default value for hi is 64*12, default value for lo is 64*5, and default value for frac is 0.33.

msad
Obtain the MSAD (Mean Sum of Absolute Differences) between two input videos.

This filter takes two input videos.

Both input videos must have the same resolution and pixel format for this filter to work correctly. Also it assumes that both inputs have the same number of frames, which are compared one by one.

The obtained per component, average, min and max MSAD is printed through the logging system.

The filter stores the calculated MSAD of each frame in frame metadata.

This filter also supports the framesync options.

In the below example the input file main.mpg being processed is compared with the reference file ref.mpg.

ffmpeg -i main.mpg -i ref.mpg -lavfi msad -f null -

multiply
Multiply first video stream pixels values with second video stream pixels values.

The filter accepts the following options:
scale

Set the scale applied to second video stream. By default is 1. Allowed range is from 0 to 9.

offset

Set the offset applied to second video stream. By default is 0.5. Allowed range is from -1 to 1.

planes

Specify planes from input video stream that will be processed. By default all planes are processed.

Commands

This filter supports same commands as options.

negate
Negate (invert) the input video.

It accepts the following option:
components

Set components to negate.

Available values for components are:

y

u

v

a

r

g

b

negate_alpha

With value 1, it negates the alpha component, if present. Default value is 0.

Commands

This filter supports same commands as options.

nlmeans
Denoise frames using Non-Local Means algorithm.

Each pixel is adjusted by looking for other pixels with similar contexts. This context similarity is defined by comparing their surrounding patches of size pxp. Patches are searched in an area of rxr around the pixel.

Note that the research area defines centers for patches, which means some patches will be made of pixels outside that research area.

The filter accepts the following options.

s

Set denoising strength. Default is 1.0. Must be in range [1.0, 30.0].

p

Set patch size. Default is 7. Must be odd number in range [0, 99].

pc

Same as p but for chroma planes.

The default value is 0 and means automatic.

r

Set research size. Default is 15. Must be odd number in range [0, 99].

rc

Same as r but for chroma planes.

The default value is 0 and means automatic.

nnedi
Deinterlace video using neural network edge directed interpolation.

This filter accepts the following options:
weights

Mandatory option, without binary file filter can not work. Currently file can be found here: https://github.com/dubhater/vapoursynth-nnedi3/blob/master/src/nnedi3_weights.bin

deint

Set which frames to deinterlace, by default it is "all". Can be "all" or "interlaced".

field

Set mode of operation.

Can be one of the following:

af

Use frame flags, both fields.

a

Use frame flags, single field.

t

Use top field only.

b

Use bottom field only.

tf

Use both fields, top first.

bf

Use both fields, bottom first.

planes

Set which planes to process, by default filter process all frames.

nsize

Set size of local neighborhood around each pixel, used by the predictor neural network.

Can be one of the following:
s8x6
s16x6
s32x6
s48x6
s8x4
s16x4
s32x4

nns

Set the number of neurons in predictor neural network. Can be one of the following:

n16

n32

n64

n128
n256

qual

Controls the number of different neural network predictions that are blended together to compute the final output value. Can be "fast", default or "slow".

etype

Set which set of weights to use in the predictor. Can be one of the following:
a, abs

weights trained to minimize absolute error

s, mse

weights trained to minimize squared error

pscrn

Controls whether or not the prescreener neural network is used to decide which pixels should be processed by the predictor neural network and which can be handled by simple cubic interpolation. The prescreener is trained to know whether cubic interpolation will be sufficient for a pixel or whether it should be predicted by the predictor nn. The computational complexity of the prescreener nn is much less than that of the predictor nn. Since most pixels can be handled by cubic interpolation, using the prescreener generally results in much faster processing. The prescreener is pretty accurate, so the difference between using it and not using it is almost always unnoticeable.

Can be one of the following:
none
original

new

new2
new3

Default is "new".

Commands

This filter supports same commands as options, excluding weights option.

noformat
Force libavfilter not to use any of the specified pixel formats for the input to the next filter.

It accepts the following parameters:
pix_fmts

A ’|’-separated list of pixel format names, such as pix_fmts=yuv420p|monow|rgb24".

Examples

Force libavfilter to use a format different from yuv420p for the input to the vflip filter:

noformat=pix_fmts=yuv420p,vflip

Convert the input video to any of the formats not contained in the list:

noformat=yuv420p|yuv444p|yuv410p

noise
Add noise on video input frame.

The filter accepts the following options:
all_seed
c0_seed
c1_seed
c2_seed
c3_seed

Set noise seed for specific pixel component or all pixel components in case of all_seed. Default value is 123457.

all_strength, alls
c0_strength, c0s
c1_strength, c1s
c2_strength, c2s
c3_strength, c3s

Set noise strength for specific pixel component or all pixel components in case all_strength. Default value is 0. Allowed range is [0, 100].

all_flags, allf
c0_flags, c0f
c1_flags, c1f
c2_flags, c2f
c3_flags, c3f

Set pixel component flags or set flags for all components if all_flags. Available values for component flags are:

a

averaged temporal noise (smoother)

p

mix random noise with a (semi)regular pattern

t

temporal noise (noise pattern changes between frames)

u

uniform noise (gaussian otherwise)

Examples

Add temporal and uniform noise to input video:

noise=alls=20:allf=t+u

normalize
Normalize RGB video (aka histogram stretching, contrast stretching). See: https://en.wikipedia.org/wiki/Normalization_(image_processing)

For each channel of each frame, the filter computes the input range and maps it linearly to the user-specified output range. The output range defaults to the full dynamic range from pure black to pure white.

Temporal smoothing can be used on the input range to reduce flickering (rapid changes in brightness) caused when small dark or bright objects enter or leave the scene. This is similar to the auto-exposure (automatic gain control) on a video camera, and, like a video camera, it may cause a period of over- or under-exposure of the video.

The R,G,B channels can be normalized independently, which may cause some color shifting, or linked together as a single channel, which prevents color shifting. Linked normalization preserves hue. Independent normalization does not, so it can be used to remove some color casts. Independent and linked normalization can be combined in any ratio.

The normalize filter accepts the following options:
blackpt
whitept

Colors which define the output range. The minimum input value is mapped to the blackpt. The maximum input value is mapped to the whitept. The defaults are black and white respectively. Specifying white for blackpt and black for whitept will give color-inverted, normalized video. Shades of grey can be used to reduce the dynamic range (contrast). Specifying saturated colors here can create some interesting effects.

smoothing

The number of previous frames to use for temporal smoothing. The input range of each channel is smoothed using a rolling average over the current frame and the smoothing previous frames. The default is 0 (no temporal smoothing).

independence

Controls the ratio of independent (color shifting) channel normalization to linked (color preserving) normalization. 0.0 is fully linked, 1.0 is fully independent. Defaults to 1.0 (fully independent).

strength

Overall strength of the filter. 1.0 is full strength. 0.0 is a rather expensive no-op. Defaults to 1.0 (full strength).

Commands

This filter supports same commands as options, excluding smoothing option. The command accepts the same syntax of the corresponding option.

If the specified expression is not valid, it is kept at its current value.

Examples

Stretch video contrast to use the full dynamic range, with no temporal smoothing; may flicker depending on the source content:

normalize=blackpt=black:whitept=white:smoothing=0

As above, but with 50 frames of temporal smoothing; flicker should be reduced, depending on the source content:

normalize=blackpt=black:whitept=white:smoothing=50

As above, but with hue-preserving linked channel normalization:

normalize=blackpt=black:whitept=white:smoothing=50:independence=0

As above, but with half strength:

normalize=blackpt=black:whitept=white:smoothing=50:independence=0:strength=0.5

Map the darkest input color to red, the brightest input color to cyan:

normalize=blackpt=red:whitept=cyan

null
Pass the video source unchanged to the output.

ocr
Optical Character Recognition

This filter uses Tesseract for optical character recognition. To enable compilation of this filter, you need to configure FFmpeg with "--enable-libtesseract".

It accepts the following options:
datapath

Set datapath to tesseract data. Default is to use whatever was set at installation.

language

Set language, default is "eng".

whitelist

Set character whitelist.

blacklist

Set character blacklist.

The filter exports recognized text as the frame metadata "lavfi.ocr.text". The filter exports confidence of recognized words as the frame metadata "lavfi.ocr.confidence".

ocv
Apply a video transform using libopencv.

To enable this filter, install the libopencv library and headers and configure FFmpeg with "--enable-libopencv".

It accepts the following parameters:
filter_name

The name of the libopencv filter to apply.

filter_params

The parameters to pass to the libopencv filter. If not specified, the default values are assumed.

Refer to the official libopencv documentation for more precise information: <http://docs.opencv.org/master/modules/imgproc/doc/filtering.html>

Several libopencv filters are supported; see the following subsections.

dilate

Dilate an image by using a specific structuring element. It corresponds to the libopencv function "cvDilate".

It accepts the parameters: struct_el|nb_iterations.

struct_el represents a structuring element, and has the syntax: colsxrows+anchor_xxanchor_y/shape

cols and rows represent the number of columns and rows of the structuring element, anchor_x and anchor_y the anchor point, and shape the shape for the structuring element. shape must be "rect", "cross", "ellipse", or "custom".

If the value for shape is "custom", it must be followed by a string of the form "=filename". The file with name filename is assumed to represent a binary image, with each printable character corresponding to a bright pixel. When a custom shape is used, cols and rows are ignored, the number or columns and rows of the read file are assumed instead.

The default value for struct_el is "3x3+0x0/rect".

nb_iterations specifies the number of times the transform is applied to the image, and defaults to 1.

Some examples:

# Use the default values
ocv=dilate
# Dilate using a structuring element with a 5x5 cross, iterating two times
ocv=filter_name=dilate:filter_params=5x5+2x2/cross|2
# Read the shape from the file diamond.shape, iterating two times.
# The file diamond.shape may contain a pattern of characters like this
# *
# ***
# *****
# ***
# *
# The specified columns and rows are ignored
# but the anchor point coordinates are not
ocv=dilate:0x0+2x2/custom=diamond.shape|2

erode

Erode an image by using a specific structuring element. It corresponds to the libopencv function "cvErode".

It accepts the parameters: struct_el:nb_iterations, with the same syntax and semantics as the dilate filter.

smooth

Smooth the input video.

The filter takes the following parameters: type|param1|param2|param3|param4.

type is the type of smooth filter to apply, and must be one of the following values: "blur", "blur_no_scale", "median", "gaussian", or "bilateral". The default value is "gaussian".

The meaning of param1, param2, param3, and param4 depends on the smooth type. param1 and param2 accept integer positive values or 0. param3 and param4 accept floating point values.

The default value for param1 is 3. The default value for the other parameters is 0.

These parameters correspond to the parameters assigned to the libopencv function "cvSmooth".

oscilloscope
2D Video Oscilloscope.

Useful to measure spatial impulse, step responses, chroma delays, etc.

It accepts the following parameters:

x

Set scope center x position.

y

Set scope center y position.

s

Set scope size, relative to frame diagonal.

t

Set scope tilt/rotation.

o

Set trace opacity.

tx

Set trace center x position.

ty

Set trace center y position.

tw

Set trace width, relative to width of frame.

th

Set trace height, relative to height of frame.

c

Set which components to trace. By default it traces first three components.

g

Draw trace grid. By default is enabled.

st

Draw some statistics. By default is enabled.

sc

Draw scope. By default is enabled.

Commands

This filter supports same commands as options. The command accepts the same syntax of the corresponding option.

If the specified expression is not valid, it is kept at its current value.

Examples

Inspect full first row of video frame.

oscilloscope=x=0.5:y=0:s=1

Inspect full last row of video frame.

oscilloscope=x=0.5:y=1:s=1

Inspect full 5th line of video frame of height 1080.

oscilloscope=x=0.5:y=5/1080:s=1

Inspect full last column of video frame.

oscilloscope=x=1:y=0.5:s=1:t=1

overlay
Overlay one video on top of another.

It takes two inputs and has one output. The first input is the "main" video on which the second input is overlaid.

It accepts the following parameters:

A description of the accepted options follows.

x

y

Set the expression for the x and y coordinates of the overlaid video on the main video. Default value is "0" for both expressions. In case the expression is invalid, it is set to a huge value (meaning that the overlay will not be displayed within the output visible area).

eof_action

See framesync.

eval

Set when the expressions for x, and y are evaluated.

It accepts the following values:
init

only evaluate expressions once during the filter initialization or when a command is processed

frame

evaluate expressions for each incoming frame

Default value is frame.

shortest

See framesync.

format

Set the format for the output video.

It accepts the following values:
yuv420

force YUV 4:2:0 8-bit planar output

yuv420p10

force YUV 4:2:0 10-bit planar output

yuv422

force YUV 4:2:2 8-bit planar output

yuv422p10

force YUV 4:2:2 10-bit planar output

yuv444

force YUV 4:4:4 8-bit planar output

yuv444p10

force YUV 4:4:4 10-bit planar output

rgb

force RGB 8-bit packed output

gbrp

force RGB 8-bit planar output

auto

automatically pick format

Default value is yuv420.

repeatlast

See framesync.

alpha

Set format of alpha of the overlaid video, it can be straight or premultiplied. Default is straight.

The x, and y expressions can contain the following parameters.
main_w, W
main_h, H

The main input width and height.

overlay_w, w
overlay_h, h

The overlay input width and height.

x

y

The computed values for x and y. They are evaluated for each new frame.

hsub
vsub

horizontal and vertical chroma subsample values of the output format. For example for the pixel format "yuv422p" hsub is 2 and vsub is 1.

n

the number of input frame, starting from 0

pos

the position in the file of the input frame, NAN if unknown; deprecated, do not use

t

The timestamp, expressed in seconds. It’s NAN if the input timestamp is unknown.

This filter also supports the framesync options.

Note that the n, t variables are available only when evaluation is done per frame, and will evaluate to NAN when eval is set to init.

Be aware that frames are taken from each input video in timestamp order, hence, if their initial timestamps differ, it is a good idea to pass the two inputs through a setpts=PTS-STARTPTS filter to have them begin in the same zero timestamp, as the example for the movie filter does.

You can chain together more overlays but you should test the efficiency of such approach.

Commands

This filter supports the following commands:

x

y

Modify the x and y of the overlay input. The command accepts the same syntax of the corresponding option.

If the specified expression is not valid, it is kept at its current value.

Examples

Draw the overlay at 10 pixels from the bottom right corner of the main video:

overlay=main_w-overlay_w-10:main_h-overlay_h-10

Using named options the example above becomes:

overlay=x=main_w-overlay_w-10:y=main_h-overlay_h-10

Insert a transparent PNG logo in the bottom left corner of the input, using the ffmpeg tool with the "-filter_complex" option:

ffmpeg -i input -i logo -filter_complex 'overlay=10:main_h-overlay_h-10' output

Insert 2 different transparent PNG logos (second logo on bottom right corner) using the ffmpeg tool:

ffmpeg -i input -i logo1 -i logo2 -filter_complex 'overlay=x=10:y=H-h-10,overlay=x=W-w-10:y=H-h-10' output

Add a transparent color layer on top of the main video; "WxH" must specify the size of the main input to the overlay filter:

color=color=red@.3:size=WxH [over]; [in][over] overlay [out]

Play an original video and a filtered version (here with the deshake filter) side by side using the ffplay tool:

ffplay input.avi -vf 'split[a][b]; [a]pad=iw*2:ih[src]; [b]deshake[filt]; [src][filt]overlay=w'

The above command is the same as:

ffplay input.avi -vf 'split[b], pad=iw*2[src], [b]deshake, [src]overlay=w'

Make a sliding overlay appearing from the left to the right top part of the screen starting since time 2:

overlay=x='if(gte(t,2), -w+(t-2)*20, NAN)':y=0

Compose output by putting two input videos side to side:

ffmpeg -i left.avi -i right.avi -filter_complex "
nullsrc=size=200x100 [background];
[0:v] setpts=PTS-STARTPTS, scale=100x100 [left];
[1:v] setpts=PTS-STARTPTS, scale=100x100 [right];
[background][left] overlay=shortest=1 [background+left];
[background+left][right] overlay=shortest=1:x=100 [left+right]
"

Mask 10-20 seconds of a video by applying the delogo filter to a section

ffmpeg -i test.avi -codec:v:0 wmv2 -ar 11025 -b:v 9000k
-vf '[in]split[split_main][split_delogo];[split_delogo]trim=start=360:end=371,delogo=0:0:640:480[delogoed];[split_main][delogoed]overlay=eof_action=pass[out]'
masked.avi

Chain several overlays in cascade:

nullsrc=s=200x200 [bg];
testsrc=s=100x100, split=4 [in0][in1][in2][in3];
[in0] lutrgb=r=0, [bg] overlay=0:0 [mid0];
[in1] lutrgb=g=0, [mid0] overlay=100:0 [mid1];
[in2] lutrgb=b=0, [mid1] overlay=0:100 [mid2];
[in3] null, [mid2] overlay=100:100 [out0]

overlay_cuda
Overlay one video on top of another.

This is the CUDA variant of the overlay filter. It only accepts CUDA frames. The underlying input pixel formats have to match.

It takes two inputs and has one output. The first input is the "main" video on which the second input is overlaid.

It accepts the following parameters:

x

y

Set expressions for the x and y coordinates of the overlaid video on the main video.

They can contain the following parameters:
main_w, W
main_h, H

The main input width and height.

overlay_w, w
overlay_h, h

The overlay input width and height.

x

y

The computed values for x and y. They are evaluated for each new frame.

n

The ordinal index of the main input frame, starting from 0.

pos

The byte offset position in the file of the main input frame, NAN if unknown. Deprecated, do not use.

t

The timestamp of the main input frame, expressed in seconds, NAN if unknown.

Default value is "0" for both expressions.

eval

Set when the expressions for x and y are evaluated.

It accepts the following values:
init

Evaluate expressions once during filter initialization or when a command is processed.

frame

Evaluate expressions for each incoming frame

Default value is frame.

eof_action

See framesync.

shortest

See framesync.

repeatlast

See framesync.

This filter also supports the framesync options.

owdenoise
Apply Overcomplete Wavelet denoiser.

The filter accepts the following options:
depth

Set depth.

Larger depth values will denoise lower frequency components more, but slow down filtering.

Must be an int in the range 8-16, default is 8.

luma_strength, ls

Set luma strength.

Must be a double value in the range 0-1000, default is 1.0.

chroma_strength, cs

Set chroma strength.

Must be a double value in the range 0-1000, default is 1.0.

pad
Add paddings to the input image, and place the original input at the provided x, y coordinates.

It accepts the following parameters:
width, w
height, h

Specify an expression for the size of the output image with the paddings added. If the value for width or height is 0, the corresponding input size is used for the output.

The width expression can reference the value set by the height expression, and vice versa.

The default value of width and height is 0.

x

y

Specify the offsets to place the input image at within the padded area, with respect to the top/left border of the output image.

The x expression can reference the value set by the y expression, and vice versa.

The default value of x and y is 0.

If x or y evaluate to a negative number, they’ll be changed so the input image is centered on the padded area.

color

Specify the color of the padded area. For the syntax of this option, check the "Color" section in the ffmpeg-utils manual.

The default value of color is "black".

eval

Specify when to evaluate width, height, x and y expression.

It accepts the following values:
init

Only evaluate expressions once during the filter initialization or when a command is processed.

frame

Evaluate expressions for each incoming frame.

Default value is init.

aspect

Pad to aspect instead to a resolution.

The value for the width, height, x, and y options are expressions containing the following constants:
in_w
in_h

The input video width and height.

iw

ih

These are the same as in_w and in_h.

out_w
out_h

The output width and height (the size of the padded area), as specified by the width and height expressions.

ow

oh

These are the same as out_w and out_h.

x

y

The x and y offsets as specified by the x and y expressions, or NAN if not yet specified.

a

same as iw / ih

sar

input sample aspect ratio

dar

input display aspect ratio, it is the same as (iw / ih) * sar

hsub
vsub

The horizontal and vertical chroma subsample values. For example for the pixel format "yuv422p" hsub is 2 and vsub is 1.

Examples

Add paddings with the color "violet" to the input video. The output video size is 640x480, and the top-left corner of the input video is placed at column 0, row 40

pad=640:480:0:40:violet

The example above is equivalent to the following command:

pad=width=640:height=480:x=0:y=40:color=violet

Pad the input to get an output with dimensions increased by 3/2, and put the input video at the center of the padded area:

pad="3/2*iw:3/2*ih:(ow-iw)/2:(oh-ih)/2"

Pad the input to get a squared output with size equal to the maximum value between the input width and height, and put the input video at the center of the padded area:

pad="max(iw\,ih):ow:(ow-iw)/2:(oh-ih)/2"

Pad the input to get a final w/h ratio of 16:9:

pad="ih*16/9:ih:(ow-iw)/2:(oh-ih)/2"

In case of anamorphic video, in order to set the output display aspect correctly, it is necessary to use sar in the expression, according to the relation:

(ih * X / ih) * sar = output_dar
X = output_dar / sar

Thus the previous example needs to be modified to:

pad="ih*16/9/sar:ih:(ow-iw)/2:(oh-ih)/2"

Double the output size and put the input video in the bottom-right corner of the output padded area:

pad="2*iw:2*ih:ow-iw:oh-ih"

palettegen
Generate one palette for a whole video stream.

It accepts the following options:
max_colors

Set the maximum number of colors to quantize in the palette. Note: the palette will still contain 256 colors; the unused palette entries will be black.

reserve_transparent

Create a palette of 255 colors maximum and reserve the last one for transparency. Reserving the transparency color is useful for GIF optimization. If not set, the maximum of colors in the palette will be 256. You probably want to disable this option for a standalone image. Set by default.

transparency_color

Set the color that will be used as background for transparency.

stats_mode

Set statistics mode.

It accepts the following values:
full

Compute full frame histograms.

diff

Compute histograms only for the part that differs from previous frame. This might be relevant to give more importance to the moving part of your input if the background is static.

single

Compute new histogram for each frame.

Default value is full.

The filter also exports the frame metadata "lavfi.color_quant_ratio" ("nb_color_in / nb_color_out") which you can use to evaluate the degree of color quantization of the palette. This information is also visible at info logging level.

Examples

Generate a representative palette of a given video using ffmpeg:

ffmpeg -i input.mkv -vf palettegen palette.png

paletteuse
Use a palette to downsample an input video stream.

The filter takes two inputs: one video stream and a palette. The palette must be a 256 pixels image.

It accepts the following options:
dither

Select dithering mode. Available algorithms are:
bayer

Ordered 8x8 bayer dithering (deterministic)

heckbert

Dithering as defined by Paul Heckbert in 1982 (simple error diffusion). Note: this dithering is sometimes considered "wrong" and is included as a reference.

floyd_steinberg

Floyd and Steingberg dithering (error diffusion)

sierra2

Frankie Sierra dithering v2 (error diffusion)

sierra2_4a

Frankie Sierra dithering v2 "Lite" (error diffusion)

sierra3

Frankie Sierra dithering v3 (error diffusion)

burkes

Burkes dithering (error diffusion)

atkinson

Atkinson dithering by Bill Atkinson at Apple Computer (error diffusion)

none

Disable dithering.

Default is sierra2_4a.

bayer_scale

When bayer dithering is selected, this option defines the scale of the pattern (how much the crosshatch pattern is visible). A low value means more visible pattern for less banding, and higher value means less visible pattern at the cost of more banding.

The option must be an integer value in the range [0,5]. Default is 2.

diff_mode

If set, define the zone to process
rectangle

Only the changing rectangle will be reprocessed. This is similar to GIF cropping/offsetting compression mechanism. This option can be useful for speed if only a part of the image is changing, and has use cases such as limiting the scope of the error diffusal dither to the rectangle that bounds the moving scene (it leads to more deterministic output if the scene doesn’t change much, and as a result less moving noise and better GIF compression).

Default is none.

new

Take new palette for each output frame.

alpha_threshold

Sets the alpha threshold for transparency. Alpha values above this threshold will be treated as completely opaque, and values below this threshold will be treated as completely transparent.

The option must be an integer value in the range [0,255]. Default is 128.

Examples

Use a palette (generated for example with palettegen) to encode a GIF using ffmpeg:

ffmpeg -i input.mkv -i palette.png -lavfi paletteuse output.gif

perspective
Correct perspective of video not recorded perpendicular to the screen.

A description of the accepted parameters follows.

x0

y0

x1

y1

x2

y2

x3

y3

Set coordinates expression for top left, top right, bottom left and bottom right corners. Default values are "0:0:W:0:0:H:W:H" with which perspective will remain unchanged. If the "sense" option is set to "source", then the specified points will be sent to the corners of the destination. If the "sense" option is set to "destination", then the corners of the source will be sent to the specified coordinates.

The expressions can use the following variables:

W

H

the width and height of video frame.

in

Input frame count.

on

Output frame count.

interpolation

Set interpolation for perspective correction.

It accepts the following values:
linear
cubic

Default value is linear.

sense

Set interpretation of coordinate options.

It accepts the following values:
0, source

Send point in the source specified by the given coordinates to the corners of the destination.

1, destination

Send the corners of the source to the point in the destination specified by the given coordinates.

Default value is source.

eval

Set when the expressions for coordinates x0,y0,...x3,y3 are evaluated.

It accepts the following values:
init

only evaluate expressions once during the filter initialization or when a command is processed

frame

evaluate expressions for each incoming frame

Default value is init.

phase
Delay interlaced video by one field time so that the field order changes.

The intended use is to fix PAL movies that have been captured with the opposite field order to the film-to-video transfer.

A description of the accepted parameters follows.
mode

Set phase mode.

It accepts the following values:

t

Capture field order top-first, transfer bottom-first. Filter will delay the bottom field.

b

Capture field order bottom-first, transfer top-first. Filter will delay the top field.

p

Capture and transfer with the same field order. This mode only exists for the documentation of the other options to refer to, but if you actually select it, the filter will faithfully do nothing.

a

Capture field order determined automatically by field flags, transfer opposite. Filter selects among t and b modes on a frame by frame basis using field flags. If no field information is available, then this works just like u.

u

Capture unknown or varying, transfer opposite. Filter selects among t and b on a frame by frame basis by analyzing the images and selecting the alternative that produces best match between the fields.

T

Capture top-first, transfer unknown or varying. Filter selects among t and p using image analysis.

B

Capture bottom-first, transfer unknown or varying. Filter selects among b and p using image analysis.

A

Capture determined by field flags, transfer unknown or varying. Filter selects among t, b and p using field flags and image analysis. If no field information is available, then this works just like U. This is the default mode.

U

Both capture and transfer unknown or varying. Filter selects among t, b and p using image analysis only.

Commands

This filter supports the all above options as commands.

photosensitivity
Reduce various flashes in video, so to help users with epilepsy.

It accepts the following options:
frames, f

Set how many frames to use when filtering. Default is 30.

threshold, t

Set detection threshold factor. Default is 1. Lower is stricter.

skip

Set how many pixels to skip when sampling frames. Default is 1. Allowed range is from 1 to 1024.

bypass

Leave frames unchanged. Default is disabled.

pixdesctest
Pixel format descriptor test filter, mainly useful for internal testing. The output video should be equal to the input video.

For example:

format=monow, pixdesctest

can be used to test the monowhite pixel format descriptor definition.

pixelize
Apply pixelization to video stream.

The filter accepts the following options:
width, w
height, h

Set block dimensions that will be used for pixelization. Default value is 16.

mode, m

Set the mode of pixelization used.

Possible values are:

avg

min

max

Default value is "avg".

planes, p

Set what planes to filter. Default is to filter all planes.

Commands

This filter supports all options as commands.

pixscope
Display sample values of color channels. Mainly useful for checking color and levels. Minimum supported resolution is 640x480.

The filters accept the following options:

x

Set scope X position, relative offset on X axis.

y

Set scope Y position, relative offset on Y axis.

w

Set scope width.

h

Set scope height.

o

Set window opacity. This window also holds statistics about pixel area.

wx

Set window X position, relative offset on X axis.

wy

Set window Y position, relative offset on Y axis.

Commands

This filter supports same commands as options.

pp
Enable the specified chain of postprocessing subfilters using libpostproc. This library should be automatically selected with a GPL build ("--enable-gpl"). Subfilters must be separated by ’/’ and can be disabled by prepending a ’-’. Each subfilter and some options have a short and a long name that can be used interchangeably, i.e. dr/dering are the same.

The filters accept the following options:
subfilters

Set postprocessing subfilters string.

All subfilters share common options to determine their scope:
a/autoq

Honor the quality commands for this subfilter.

c/chrom

Do chrominance filtering, too (default).

y/nochrom

Do luma filtering only (no chrominance).

n/noluma

Do chrominance filtering only (no luma).

These options can be appended after the subfilter name, separated by a ’|’.

Available subfilters are:
hb/hdeblock[|difference[|flatness]]

Horizontal deblocking filter
difference

Difference factor where higher values mean more deblocking (default: 32).

flatness

Flatness threshold where lower values mean more deblocking (default: 39).

vb/vdeblock[|difference[|flatness]]

Vertical deblocking filter
difference

Difference factor where higher values mean more deblocking (default: 32).

flatness

Flatness threshold where lower values mean more deblocking (default: 39).

ha/hadeblock[|difference[|flatness]]

Accurate horizontal deblocking filter
difference

Difference factor where higher values mean more deblocking (default: 32).

flatness

Flatness threshold where lower values mean more deblocking (default: 39).

va/vadeblock[|difference[|flatness]]

Accurate vertical deblocking filter
difference

Difference factor where higher values mean more deblocking (default: 32).

flatness

Flatness threshold where lower values mean more deblocking (default: 39).

The horizontal and vertical deblocking filters share the difference and flatness values so you cannot set different horizontal and vertical thresholds.
h1/x1hdeblock

Experimental horizontal deblocking filter

v1/x1vdeblock

Experimental vertical deblocking filter

dr/dering

Deringing filter

tn/tmpnoise[|threshold1[|threshold2[|threshold3]]], temporal noise
reducer

threshold1

larger -> stronger filtering

threshold2

larger -> stronger filtering

threshold3

larger -> stronger filtering

al/autolevels[:f/fullyrange], automatic brightness / contrast
correction

f/fullyrange

Stretch luma to "0-255".

lb/linblenddeint

Linear blend deinterlacing filter that deinterlaces the given block by filtering all lines with a "(1 2 1)" filter.

li/linipoldeint

Linear interpolating deinterlacing filter that deinterlaces the given block by linearly interpolating every second line.

ci/cubicipoldeint

Cubic interpolating deinterlacing filter deinterlaces the given block by cubically interpolating every second line.

md/mediandeint

Median deinterlacing filter that deinterlaces the given block by applying a median filter to every second line.

fd/ffmpegdeint

FFmpeg deinterlacing filter that deinterlaces the given block by filtering every second line with a "(-1 4 2 4 -1)" filter.

l5/lowpass5

Vertically applied FIR lowpass deinterlacing filter that deinterlaces the given block by filtering all lines with a "(-1 2 6 2 -1)" filter.

fq/forceQuant[|quantizer]

Overrides the quantizer table from the input with the constant quantizer you specify.
quantizer

Quantizer to use

de/default

Default pp filter combination ("hb|a,vb|a,dr|a")

fa/fast

Fast pp filter combination ("h1|a,v1|a,dr|a")

ac

High quality pp filter combination ("ha|a|128|7,va|a,dr|a")

Examples

Apply horizontal and vertical deblocking, deringing and automatic brightness/contrast:

pp=hb/vb/dr/al

Apply default filters without brightness/contrast correction:

pp=de/-al

Apply default filters and temporal denoiser:

pp=default/tmpnoise|1|2|3

Apply deblocking on luma only, and switch vertical deblocking on or off automatically depending on available CPU time:

pp=hb|y/vb|a

pp7
Apply Postprocessing filter 7. It is variant of the spp filter, similar to spp = 6 with 7 point DCT, where only the center sample is used after IDCT.

The filter accepts the following options:

qp

Force a constant quantization parameter. It accepts an integer in range 0 to 63. If not set, the filter will use the QP from the video stream (if available).

mode

Set thresholding mode. Available modes are:
hard

Set hard thresholding.

soft

Set soft thresholding (better de-ringing effect, but likely blurrier).

medium

Set medium thresholding (good results, default).

premultiply
Apply alpha premultiply effect to input video stream using first plane of second stream as alpha.

Both streams must have same dimensions and same pixel format.

The filter accepts the following option:
planes

Set which planes will be processed, unprocessed planes will be copied. By default value 0xf, all planes will be processed.

inplace

Do not require 2nd input for processing, instead use alpha plane from input stream.

prewitt
Apply prewitt operator to input video stream.

The filter accepts the following option:
planes

Set which planes will be processed, unprocessed planes will be copied. By default value 0xf, all planes will be processed.

scale

Set value which will be multiplied with filtered result.

delta

Set value which will be added to filtered result.

Commands

This filter supports the all above options as commands.

pseudocolor
Alter frame colors in video with pseudocolors.

This filter accepts the following options:

c0

set pixel first component expression

c1

set pixel second component expression

c2

set pixel third component expression

c3

set pixel fourth component expression, corresponds to the alpha component

index, i

set component to use as base for altering colors

preset, p

Pick one of built-in LUTs. By default is set to none.

Available LUTs:
magma
inferno
plasma
viridis
turbo
cividis
range1
range2
shadows
highlights
solar
nominal
preferred
total
spectral
cool
heat
fiery
blues
green
helix

opacity

Set opacity of output colors. Allowed range is from 0 to 1. Default value is set to 1.

Each of the expression options specifies the expression to use for computing the lookup table for the corresponding pixel component values.

The expressions can contain the following constants and functions:

w

h

The input width and height.

val

The input value for the pixel component.

ymin, umin, vmin, amin

The minimum allowed component value.

ymax, umax, vmax, amax

The maximum allowed component value.

All expressions default to "val".

Commands

This filter supports the all above options as commands.

Examples

Change too high luma values to gradient:

pseudocolor="'if(between(val,ymax,amax),lerp(ymin,ymax,(val-ymax)/(amax-ymax)),-1):if(between(val,ymax,amax),lerp(umax,umin,(val-ymax)/(amax-ymax)),-1):if(between(val,ymax,amax),lerp(vmin,vmax,(val-ymax)/(amax-ymax)),-1):-1'"

psnr
Obtain the average, maximum and minimum PSNR (Peak Signal to Noise Ratio) between two input videos.

This filter takes in input two input videos, the first input is considered the "main" source and is passed unchanged to the output. The second input is used as a "reference" video for computing the PSNR.

Both video inputs must have the same resolution and pixel format for this filter to work correctly. Also it assumes that both inputs have the same number of frames, which are compared one by one.

The obtained average PSNR is printed through the logging system.

The filter stores the accumulated MSE (mean squared error) of each frame, and at the end of the processing it is averaged across all frames equally, and the following formula is applied to obtain the PSNR:

PSNR = 10*log10(MAX^2/MSE)

Where MAX is the average of the maximum values of each component of the image.

The description of the accepted parameters follows.
stats_file, f

If specified the filter will use the named file to save the PSNR of each individual frame. When filename equals "-" the data is sent to standard output.

stats_version

Specifies which version of the stats file format to use. Details of each format are written below. Default value is 1.

stats_add_max

Determines whether the max value is output to the stats log. Default value is 0. Requires stats_version >= 2. If this is set and stats_version < 2, the filter will return an error.

This filter also supports the framesync options.

The file printed if stats_file is selected, contains a sequence of key/value pairs of the form key:value for each compared couple of frames.

If a stats_version greater than 1 is specified, a header line precedes the list of per-frame-pair stats, with key value pairs following the frame format with the following parameters:
psnr_log_version

The version of the log file format. Will match stats_version.

fields

A comma separated list of the per-frame-pair parameters included in the log.

A description of each shown per-frame-pair parameter follows:

n

sequential number of the input frame, starting from 1

mse_avg

Mean Square Error pixel-by-pixel average difference of the compared frames, averaged over all the image components.

mse_y, mse_u, mse_v, mse_r, mse_g, mse_b, mse_a

Mean Square Error pixel-by-pixel average difference of the compared frames for the component specified by the suffix.

psnr_y, psnr_u, psnr_v, psnr_r, psnr_g, psnr_b, psnr_a

Peak Signal to Noise ratio of the compared frames for the component specified by the suffix.

max_avg, max_y, max_u, max_v

Maximum allowed value for each channel, and average over all channels.

Examples

For example:

movie=ref_movie.mpg, setpts=PTS-STARTPTS [main];
[main][ref] psnr="stats_file=stats.log" [out]

On this example the input file being processed is compared with the reference file ref_movie.mpg. The PSNR of each individual frame is stored in stats.log.

Another example with different containers:

ffmpeg -i main.mpg -i ref.mkv -lavfi "[0:v]settb=AVTB,setpts=PTS-STARTPTS[main];[1:v]settb=AVTB,setpts=PTS-STARTPTS[ref];[main][ref]psnr" -f null -

pullup
Pulldown reversal (inverse telecine) filter, capable of handling mixed hard-telecine, 24000/1001 fps progressive, and 30000/1001 fps progressive content.

The pullup filter is designed to take advantage of future context in making its decisions. This filter is stateless in the sense that it does not lock onto a pattern to follow, but it instead looks forward to the following fields in order to identify matches and rebuild progressive frames.

To produce content with an even framerate, insert the fps filter after pullup, use "fps=24000/1001" if the input frame rate is 29.97fps, "fps=24" for 30fps and the (rare) telecined 25fps input.

The filter accepts the following options:

jl

jr

jt

jb

These options set the amount of "junk" to ignore at the left, right, top, and bottom of the image, respectively. Left and right are in units of 8 pixels, while top and bottom are in units of 2 lines. The default is 8 pixels on each side.

sb

Set the strict breaks. Setting this option to 1 will reduce the chances of filter generating an occasional mismatched frame, but it may also cause an excessive number of frames to be dropped during high motion sequences. Conversely, setting it to -1 will make filter match fields more easily. This may help processing of video where there is slight blurring between the fields, but may also cause there to be interlaced frames in the output. Default value is 0.

mp

Set the metric plane to use. It accepts the following values:

l

Use luma plane.

u

Use chroma blue plane.

v

Use chroma red plane.

This option may be set to use chroma plane instead of the default luma plane for doing filter’s computations. This may improve accuracy on very clean source material, but more likely will decrease accuracy, especially if there is chroma noise (rainbow effect) or any grayscale video. The main purpose of setting mp to a chroma plane is to reduce CPU load and make pullup usable in realtime on slow machines.

For best results (without duplicated frames in the output file) it is necessary to change the output frame rate. For example, to inverse telecine NTSC input:

ffmpeg -i input -vf pullup -r 24000/1001 ...

qp
Change video quantization parameters (QP).

The filter accepts the following option:

qp

Set expression for quantization parameter.

The expression is evaluated through the eval API and can contain, among others, the following constants:
known

1 if index is not 129, 0 otherwise.

qp

Sequential index starting from -129 to 128.

Examples

Some equation like:

qp=2+2*sin(PI*qp)

random
Flush video frames from internal cache of frames into a random order. No frame is discarded. Inspired by frei0r nervous filter.
frames

Set size in number of frames of internal cache, in range from 2 to 512. Default is 30.

seed

Set seed for random number generator, must be an integer included between 0 and "UINT32_MAX". If not specified, or if explicitly set to less than 0, the filter will try to use a good random seed on a best effort basis.

readeia608
Read closed captioning (EIA-608) information from the top lines of a video frame.

This filter adds frame metadata for "lavfi.readeia608.X.cc" and "lavfi.readeia608.X.line", where "X" is the number of the identified line with EIA-608 data (starting from 0). A description of each metadata value follows:
lavfi.readeia608.X.cc

The two bytes stored as EIA-608 data (printed in hexadecimal).

lavfi.readeia608.X.line

The number of the line on which the EIA-608 data was identified and read.

This filter accepts the following options:
scan_min

Set the line to start scanning for EIA-608 data. Default is 0.

scan_max

Set the line to end scanning for EIA-608 data. Default is 29.

spw

Set the ratio of width reserved for sync code detection. Default is 0.27. Allowed range is "[0.1 - 0.7]".

chp

Enable checking the parity bit. In the event of a parity error, the filter will output 0x00 for that character. Default is false.

lp

Lowpass lines prior to further processing. Default is enabled.

Commands

This filter supports the all above options as commands.

Examples

Output a csv with presentation time and the first two lines of identified EIA-608 captioning data.

ffprobe -f lavfi -i movie=captioned_video.mov,readeia608 -show_entries frame=pts_time:frame_tags=lavfi.readeia608.0.cc,lavfi.readeia608.1.cc -of csv

readvitc
Read vertical interval timecode (VITC) information from the top lines of a video frame.

The filter adds frame metadata key "lavfi.readvitc.tc_str" with the timecode value, if a valid timecode has been detected. Further metadata key "lavfi.readvitc.found" is set to 0/1 depending on whether timecode data has been found or not.

This filter accepts the following options:
scan_max

Set the maximum number of lines to scan for VITC data. If the value is set to -1 the full video frame is scanned. Default is 45.

thr_b

Set the luma threshold for black. Accepts float numbers in the range [0.0,1.0], default value is 0.2. The value must be equal or less than "thr_w".

thr_w

Set the luma threshold for white. Accepts float numbers in the range [0.0,1.0], default value is 0.6. The value must be equal or greater than "thr_b".

Examples

Detect and draw VITC data onto the video frame; if no valid VITC is detected, draw "--:--:--:--" as a placeholder:

ffmpeg -i input.avi -filter:v 'readvitc,drawtext=fontfile=FreeMono.ttf:text=%{metadata\\:lavfi.readvitc.tc_str\\:--\\\\\\:--\\\\\\:--\\\\\\:--}:x=(w-tw)/2:y=400-ascent'

remap
Remap pixels using 2nd: Xmap and 3rd: Ymap input video stream.

Destination pixel at position (X, Y) will be picked from source (x, y) position where x = Xmap(X, Y) and y = Ymap(X, Y). If mapping values are out of range, zero value for pixel will be used for destination pixel.

Xmap and Ymap input video streams must be of same dimensions. Output video stream will have Xmap/Ymap video stream dimensions. Xmap and Ymap input video streams are 16bit depth, single channel.
format

Specify pixel format of output from this filter. Can be "color" or "gray". Default is "color".

fill

Specify the color of the unmapped pixels. For the syntax of this option, check the "Color" section in the ffmpeg-utils manual. Default color is "black".

removegrain
The removegrain filter is a spatial denoiser for progressive video.

m0

Set mode for the first plane.

m1

Set mode for the second plane.

m2

Set mode for the third plane.

m3

Set mode for the fourth plane.

Range of mode is from 0 to 24. Description of each mode follows:

0

Leave input plane unchanged. Default.

1

Clips the pixel with the minimum and maximum of the 8 neighbour pixels.

2

Clips the pixel with the second minimum and maximum of the 8 neighbour pixels.

3

Clips the pixel with the third minimum and maximum of the 8 neighbour pixels.

4

Clips the pixel with the fourth minimum and maximum of the 8 neighbour pixels. This is equivalent to a median filter.

5

Line-sensitive clipping giving the minimal change.

6

Line-sensitive clipping, intermediate.

7

Line-sensitive clipping, intermediate.

8

Line-sensitive clipping, intermediate.

9

Line-sensitive clipping on a line where the neighbours pixels are the closest.

10

Replaces the target pixel with the closest neighbour.

11

[1 2 1] horizontal and vertical kernel blur.

12

Same as mode 11.

13

Bob mode, interpolates top field from the line where the neighbours pixels are the closest.

14

Bob mode, interpolates bottom field from the line where the neighbours pixels are the closest.

15

Bob mode, interpolates top field. Same as 13 but with a more complicated interpolation formula.

16

Bob mode, interpolates bottom field. Same as 14 but with a more complicated interpolation formula.

17

Clips the pixel with the minimum and maximum of res