Manpages

NAME

openssl - OpenSSL command line program

SYNOPSIS

openssl command [ options ... ] [ parameters ... ]

openssl no-XXX [ options ]

openssl -help | -version

DESCRIPTION

OpenSSL is a cryptography toolkit implementing the Secure Sockets Layer (SSL) and Transport Layer Security (TLS) network protocols and related cryptography standards required by them.

The openssl program is a command line program for using the various cryptography functions of OpenSSL’s crypto library from the shell. It can be used for

o Creation and management of private keys, public keys and parameters
o Public key cryptographic operations
o Creation of X.509 certificates, CSRs and CRLs
o Calculation of Message Digests and Message Authentication Codes
o Encryption and Decryption with Ciphers
o SSL/TLS Client and Server Tests
o Handling of S/MIME signed or encrypted mail
o Timestamp requests, generation and verification

COMMAND SUMMARY

The openssl program provides a rich variety of commands (command in the "SYNOPSIS" above). Each command can have many options and argument parameters, shown above as options and parameters.

Detailed documentation and use cases for most standard subcommands are available (e.g., openssl-x509(1)). The subcommand openssl-list(1) may be used to list subcommands.

The command no-XXX tests whether a command of the specified name is available. If no command named XXX exists, it returns 0 (success) and prints no-XXX; otherwise it returns 1 and prints XXX. In both cases, the output goes to stdout and nothing is printed to stderr. Additional command line arguments are always ignored. Since for each cipher there is a command of the same name, this provides an easy way for shell scripts to test for the availability of ciphers in the openssl program. (no-XXX is not able to detect pseudo-commands such as quit, list, or no-XXX itself.)

Configuration Option
Many commands use an external configuration file for some or all of their arguments and have a -config option to specify that file. The default name of the file is openssl.cnf in the default certificate storage area, which can be determined from the openssl-version(1) command using the -d or -a option. The environment variable OPENSSL_CONF can be used to specify a different file location or to disable loading a configuration (using the empty string).

Among others, the configuration file can be used to load modules and to specify parameters for generating certificates and random numbers. See config(5) for details.

Standard Commands
asn1parse

Parse an ASN.1 sequence.

ca

Certificate Authority (CA) Management.

ciphers

Cipher Suite Description Determination.

cms

CMS (Cryptographic Message Syntax) command.

crl

Certificate Revocation List (CRL) Management.

crl2pkcs7

CRL to PKCS#7 Conversion.

dgst

Message Digest calculation. MAC calculations are superseded by openssl-mac(1).

dhparam

Generation and Management of Diffie-Hellman Parameters. Superseded by openssl-genpkey(1) and openssl-pkeyparam(1).

dsa

DSA Data Management.

dsaparam

DSA Parameter Generation and Management. Superseded by openssl-genpkey(1) and openssl-pkeyparam(1).

ec

EC (Elliptic curve) key processing.

ecparam

EC parameter manipulation and generation.

enc

Encryption, decryption, and encoding.

engine

Engine (loadable module) information and manipulation.

errstr

Error Number to Error String Conversion.

fipsinstall

FIPS configuration installation.

gendsa

Generation of DSA Private Key from Parameters. Superseded by openssl-genpkey(1) and openssl-pkey(1).

genpkey

Generation of Private Key or Parameters.

genrsa

Generation of RSA Private Key. Superseded by openssl-genpkey(1).

help

Display information about a command’s options.

info

Display diverse information built into the OpenSSL libraries.

kdf

Key Derivation Functions.

list

List algorithms and features.

mac

Message Authentication Code Calculation.

nseq

Create or examine a Netscape certificate sequence.

ocsp

Online Certificate Status Protocol command.

passwd

Generation of hashed passwords.

pkcs12

PKCS#12 Data Management.

pkcs7

PKCS#7 Data Management.

pkcs8

PKCS#8 format private key conversion command.

pkey

Public and private key management.

pkeyparam

Public key algorithm parameter management.

pkeyutl

Public key algorithm cryptographic operation command.

prime

Compute prime numbers.

rand

Generate pseudo-random bytes.

rehash

Create symbolic links to certificate and CRL files named by the hash values.

req

PKCS#10 X.509 Certificate Signing Request (CSR) Management.

rsa

RSA key management.

rsautl

RSA command for signing, verification, encryption, and decryption. Superseded by openssl-pkeyutl(1).

s_client

This implements a generic SSL/TLS client which can establish a transparent connection to a remote server speaking SSL/TLS. It’s intended for testing purposes only and provides only rudimentary interface functionality but internally uses mostly all functionality of the OpenSSL ssl library.

s_server

This implements a generic SSL/TLS server which accepts connections from remote clients speaking SSL/TLS. It’s intended for testing purposes only and provides only rudimentary interface functionality but internally uses mostly all functionality of the OpenSSL ssl library. It provides both an own command line oriented protocol for testing SSL functions and a simple HTTP response facility to emulate an SSL/TLS-aware webserver.

s_time

SSL Connection Timer.

sess_id

SSL Session Data Management.

smime

S/MIME mail processing.

speed

Algorithm Speed Measurement.

spkac

SPKAC printing and generating command.

srp

Maintain SRP password file. This command is deprecated.

storeutl

Command to list and display certificates, keys, CRLs, etc.

ts

Time Stamping Authority command.

verify

X.509 Certificate Verification. See also the openssl-verification-options(1) manual page.

version

OpenSSL Version Information.

x509

X.509 Certificate Data Management.

Message Digest Commands
blake2b512

BLAKE2b-512 Digest

blake2s256

BLAKE2s-256 Digest

md2

MD2 Digest

md4

MD4 Digest

md5

MD5 Digest

mdc2

MDC2 Digest

rmd160

RMD-160 Digest

sha1

SHA-1 Digest

sha224

SHA-2 224 Digest

sha256

SHA-2 256 Digest

sha384

SHA-2 384 Digest

sha512

SHA-2 512 Digest

sha3-224

SHA-3 224 Digest

sha3-256

SHA-3 256 Digest

sha3-384

SHA-3 384 Digest

sha3-512

SHA-3 512 Digest

keccak-224

KECCAK 224 Digest

keccak-256

KECCAK 256 Digest

keccak-384

KECCAK 384 Digest

keccak-512

KECCAK 512 Digest

shake128

SHA-3 SHAKE128 Digest

shake256

SHA-3 SHAKE256 Digest

sm3

SM3 Digest

Encryption, Decryption, and Encoding Commands
The following aliases provide convenient access to the most used encodings and ciphers.

Depending on how OpenSSL was configured and built, not all ciphers listed here may be present. See openssl-enc(1) for more information.
aes128
, aes-128-cbc, aes-128-cfb, aes-128-ctr, aes-128-ecb, aes-128-ofb

AES-128 Cipher

aes192, aes-192-cbc, aes-192-cfb, aes-192-ctr, aes-192-ecb, aes-192-ofb

AES-192 Cipher

aes256, aes-256-cbc, aes-256-cfb, aes-256-ctr, aes-256-ecb, aes-256-ofb

AES-256 Cipher

aria128, aria-128-cbc, aria-128-cfb, aria-128-ctr, aria-128-ecb,
aria-128-ofb

Aria-128 Cipher

aria192, aria-192-cbc, aria-192-cfb, aria-192-ctr, aria-192-ecb,
aria-192-ofb

Aria-192 Cipher

aria256, aria-256-cbc, aria-256-cfb, aria-256-ctr, aria-256-ecb,
aria-256-ofb

Aria-256 Cipher

base64

Base64 Encoding

bf, bf-cbc, bf-cfb, bf-ecb, bf-ofb

Blowfish Cipher

camellia128, camellia-128-cbc, camellia-128-cfb, camellia-128-ctr,
camellia-128-ecb
, camellia-128-ofb

Camellia-128 Cipher

camellia192, camellia-192-cbc, camellia-192-cfb, camellia-192-ctr,
camellia-192-ecb
, camellia-192-ofb

Camellia-192 Cipher

camellia256, camellia-256-cbc, camellia-256-cfb, camellia-256-ctr,
camellia-256-ecb
, camellia-256-ofb

Camellia-256 Cipher

cast, cast-cbc

CAST Cipher

cast5-cbc, cast5-cfb, cast5-ecb, cast5-ofb

CAST5 Cipher

chacha20

Chacha20 Cipher

des, des-cbc, des-cfb, des-ecb, des-ede, des-ede-cbc, des-ede-cfb,
des-ede-ofb
, des-ofb

DES Cipher

des3, desx, des-ede3, des-ede3-cbc, des-ede3-cfb, des-ede3-ofb

Triple-DES Cipher

idea, idea-cbc, idea-cfb, idea-ecb, idea-ofb

IDEA Cipher

rc2, rc2-cbc, rc2-cfb, rc2-ecb, rc2-ofb

RC2 Cipher

rc4

RC4 Cipher

rc5, rc5-cbc, rc5-cfb, rc5-ecb, rc5-ofb

RC5 Cipher

seed, seed-cbc, seed-cfb, seed-ecb, seed-ofb

SEED Cipher

sm4, sm4-cbc, sm4-cfb, sm4-ctr, sm4-ecb, sm4-ofb

SM4 Cipher

OPTIONS

Details of which options are available depend on the specific command. This section describes some common options with common behavior.

Program Options
These options can be specified without a command specified to get help or version information.
-help

Provides a terse summary of all options. For more detailed information, each command supports a -help option. Accepts --help as well.

-version

Provides a terse summary of the openssl program version. For more detailed information see openssl-version(1). Accepts --version as well.

Common Options
-help

If an option takes an argument, the "type" of argument is also given.

--

This terminates the list of options. It is mostly useful if any filename parameters start with a minus sign:

openssl verify [flags...] -- -cert1.pem...

Format Options
See openssl-format-options(1) for manual page.

Pass Phrase Options
See the openssl-passphrase-options(1) manual page.

Random State Options
Prior to OpenSSL 1.1.1, it was common for applications to store information about the state of the random-number generator in a file that was loaded at startup and rewritten upon exit. On modern operating systems, this is generally no longer necessary as OpenSSL will seed itself from a trusted entropy source provided by the operating system. These flags are still supported for special platforms or circumstances that might require them.

It is generally an error to use the same seed file more than once and every use of -rand should be paired with -writerand.
-rand
files

A file or files containing random data used to seed the random number generator. Multiple files can be specified separated by an OS-dependent character. The separator is ";" for MS-Windows, "," for OpenVMS, and ":" for all others. Another way to specify multiple files is to repeat this flag with different filenames.

-writerand file

Writes the seed data to the specified file upon exit. This file can be used in a subsequent command invocation.

Certificate Verification Options
See the openssl-verification-options(1) manual page.

Name Format Options
See the openssl-namedisplay-options(1) manual page.

TLS Version Options
Several commands use SSL, TLS, or DTLS. By default, the commands use TLS and clients will offer the lowest and highest protocol version they support, and servers will pick the highest version that the client offers that is also supported by the server.

The options below can be used to limit which protocol versions are used, and whether TCP (SSL and TLS) or UDP (DTLS) is used. Note that not all protocols and flags may be available, depending on how OpenSSL was built.
-ssl3
, -tls1, -tls1_1, -tls1_2, -tls1_3, -no_ssl3, -no_tls1,
-no_tls1_1
, -no_tls1_2, -no_tls1_3

These options require or disable the use of the specified SSL or TLS protocols. When a specific TLS version is required, only that version will be offered or accepted. Only one specific protocol can be given and it cannot be combined with any of the no_ options. The no_* options do not work with s_time and ciphers commands but work with s_client and s_server commands.

-dtls, -dtls1, -dtls1_2

These options specify to use DTLS instead of TLS. With -dtls, clients will negotiate any supported DTLS protocol version. Use the -dtls1 or -dtls1_2 options to support only DTLS1.0 or DTLS1.2, respectively.

Engine Options
-engine
id

Load the engine identified by id and use all the methods it implements (algorithms, key storage, etc.), unless specified otherwise in the command-specific documentation or it is configured to do so, as described in "Engine Configuration" in config(5).

The engine will be used for key ids specified with -key and similar options when an option like -keyform engine is given.

A special case is the "loader_attic" engine, which is meant just for internal OpenSSL testing purposes and supports loading keys, parameters, certificates, and CRLs from files. When this engine is used, files with such credentials are read via this engine. Using the "file:" schema is optional; a plain file (path) name will do.

Options specifying keys, like -key and similar, can use the generic OpenSSL engine key loading URI scheme "org.openssl.engine:" to retrieve private keys and public keys. The URI syntax is as follows, in simplified form:

org.openssl.engine:{engineid}:{keyid}

Where "{engineid}" is the identity/name of the engine, and "{keyid}" is a key identifier that’s acceptable by that engine. For example, when using an engine that interfaces against a PKCS#11 implementation, the generic key URI would be something like this (this happens to be an example for the PKCS#11 engine that’s part of OpenSC):

-key org.openssl.engine:pkcs11:label_some-private-key

As a third possibility, for engines and providers that have implemented their own OSSL_STORE_LOADER(3), "org.openssl.engine:" should not be necessary. For a PKCS#11 implementation that has implemented such a loader, the PKCS#11 URI as defined in RFC 7512 should be possible to use directly:

-key pkcs11:object=some-private-key;pin-value=1234

Provider Options
-provider
name

Load and initialize the provider identified by name. The name can be also a path to the provider module. In that case the provider name will be the specified path and not just the provider module name. Interpretation of relative paths is platform specific. The configured "MODULESDIR" path, OPENSSL_MODULES environment variable, or the path specified by -provider-path is prepended to relative paths. See provider(7) for a more detailed description.

-provider-path path

Specifies the search path that is to be used for looking for providers. Equivalently, the OPENSSL_MODULES environment variable may be set.

-propquery propq

Specifies the property query clause to be used when fetching algorithms from the loaded providers. See property(7) for a more detailed description.

ENVIRONMENT

The OpenSSL library can be take some configuration parameters from the environment. Some of these variables are listed below. For information about specific commands, see openssl-engine(1), openssl-rehash(1), and tsget(1).

For information about the use of environment variables in configuration, see "ENVIRONMENT" in config(5).

For information about querying or specifying CPU architecture flags, see OPENSSL_ia32cap(3), and OPENSSL_s390xcap(3).

For information about all environment variables used by the OpenSSL libraries, see openssl-env(7).
OPENSSL_TRACE=
name[,...]

Enable tracing output of OpenSSL library, by name. This output will only make sense if you know OpenSSL internals well. Also, it might not give you any output at all if OpenSSL was built without tracing support.

The value is a comma separated list of names, with the following available:
TRACE

Traces the OpenSSL trace API itself.

INIT

Traces OpenSSL library initialization and cleanup.

TLS

Traces the TLS/SSL protocol.

TLS_CIPHER

Traces the ciphers used by the TLS/SSL protocol.

CONF

Show details about provider and engine configuration.

ENGINE_TABLE

The function that is used by RSA, DSA (etc) code to select registered ENGINEs, cache defaults and functional references (etc), will generate debugging summaries.

ENGINE_REF_COUNT

Reference counts in the ENGINE structure will be monitored with a line of generated for each change.

PKCS5V2

Traces PKCS#5 v2 key generation.

PKCS12_KEYGEN

Traces PKCS#12 key generation.

PKCS12_DECRYPT

Traces PKCS#12 decryption.

X509V3_POLICY

Generates the complete policy tree at various points during X.509 v3 policy evaluation.

BN_CTX

Traces BIGNUM context operations.

CMP

Traces CMP client and server activity.

STORE

Traces STORE operations.

DECODER

Traces decoder operations.

ENCODER

Traces encoder operations.

REF_COUNT

Traces decrementing certain ASN.1 structure references.

HTTP

Traces the HTTP client and server, such as messages being sent and received.

SEE ALSO

openssl-asn1parse(1), openssl-ca(1), openssl-ciphers(1), openssl-cms(1), openssl-crl(1), openssl-crl2pkcs7(1), openssl-dgst(1), openssl-dhparam(1), openssl-dsa(1), openssl-dsaparam(1), openssl-ec(1), openssl-ecparam(1), openssl-enc(1), openssl-engine(1), openssl-errstr(1), openssl-gendsa(1), openssl-genpkey(1), openssl-genrsa(1), openssl-kdf(1), openssl-list(1), openssl-mac(1), openssl-nseq(1), openssl-ocsp(1), openssl-passwd(1), openssl-pkcs12(1), openssl-pkcs7(1), openssl-pkcs8(1), openssl-pkey(1), openssl-pkeyparam(1), openssl-pkeyutl(1), openssl-prime(1), openssl-rand(1), openssl-rehash(1), openssl-req(1), openssl-rsa(1), openssl-rsautl(1), openssl-s_client(1), openssl-s_server(1), openssl-s_time(1), openssl-sess_id(1), openssl-smime(1), openssl-speed(1), openssl-spkac(1), openssl-srp(1), openssl-storeutl(1), openssl-ts(1), openssl-verify(1), openssl-version(1), openssl-x509(1), config(5), crypto(7), openssl-env(7). ssl(7), x509v3_config(5)

HISTORY

The list -XXX-algorithms options were added in OpenSSL 1.0.0; For notes on the availability of other commands, see their individual manual pages.

The -issuer_checks option is deprecated as of OpenSSL 1.1.0 and is silently ignored.

The -xcertform and -xkeyform options are obsolete since OpenSSL 3.0 and have no effect.

The interactive mode, which could be invoked by running "openssl" with no further arguments, was removed in OpenSSL 3.0, and running that program with no arguments is now equivalent to "openssl help".

COPYRIGHT

Copyright 2000-2023 The OpenSSL Project Authors. All Rights Reserved.

Licensed under the Apache License 2.0 (the "License"). You may not use this file except in compliance with the License. You can obtain a copy in the file LICENSE in the source distribution or at <https://www.openssl.org/source/license.html>;.